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Those aspects of dimensional analysis and similarity which are of most
pertinence to fluid circuitry are discussede The equations of fluid flow
through both orifices and circular tubes are given and discusseds The equiv=-
alent parameters of passive fluid elements are presented, both steady-state
and small-signal.

The instrumentation of fluids is discussed both for steady-state and time
dependent measurements. Typical active devices are described, discussed, and
compared. Specific attention is given to the impact modulator and its use in
operational amplifiers. An equivalent circuit for the impact modulator is
found,

The subject of circuit synthesisy, and particularly transfer function syn-
thesis, is discussede The requirements of proportional fluid circuitry is
discussed, and the use of equivalent circuits in the analysis of fluid circuits
is presented through the discussion of specific circuits. Both steady-state
and time varying examples are given,

The loop transfer function of an idealized, but typical, fluid control
circuit is presented and analysed by the use of a Bode plot.
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Symbol List for Volume II

constant

Gain constant

constant

Constant

constant, flow coefficient, capacity, velocity of sound
orifice diameter, tube diameter
tube diameter
acceleration of gravity
frequency

break frequency
transfer function
Fluid inductance

fluid current

reference current

ratio of specific heats
constant

gain constants

length

length

Mach Number

polytropic exponent
pressure

critical pressure

mean pressure

upstream pressure
downstream pressure
throat pressure
pressure drop

volume flow

mean volume flow

gas constant

Reynolds number
Acoustic Reynolds Number

Resistance (general)
reference resistance

specific resistances
Laplace variable

Stokes Number
Strouhal Number

Longitudinal Acoustic Strouhal Number
Transverse Acoustic Strouhal Number
mean temperature

reference time

reference fluid velocity
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general fluid velocities
dimensionless fluid velocities
average fluid velocity
Fluid Velocity

distance

distance

expansion coefficient
volume

mass density

weight density

viscesity

dimensionless parameter
time constant

angle

angular frequency
reference frequency




FLUID DYNAMICS FUNDAMENTALS

1.1 Introduction

A rapid growth has been seen in the past few years in the new technology
of pure fluid amplifiers and pure fluid servo controls.

Pure fluid technology is based on some of the most sophisticated fluid
dynamics phenomena encountered by the aerodynamicist, not to mention the control
engineer, i.e. the problem of transient flow in a complex fluid network. As the
response of the fluid amplifier is made faster and the circuit frequencies in-
creasey; these problems will become more and more acute.

The basic equations of motion of a viscous time-dependent flow, the
Navier-Stokes eqs., are strongly non-linear and intractable analytically, even
in the two-dimensional incompressible case.

In Volume I, Section l.l, computational techniques are developed for the
numerical solution of the equations for a limited flow field. Large computers
will be needed to extend the flow field to the dimensions required by practical
problems.

Furthemmore, the Navier-Stokes equations are applicable strictly only to
the laminar flow case, i.e., to such flows where the Reynolds Number remains
below some limiting value (depending on the flow geometry).

Above this value, turbulent flow prevails, for which there is no exact
mathematical description, because the number of unknowns exceed the number of
available equations; additional empirical relationships have been formmulated by
many research workers to fit a variety of flow configurations, with varying
successe.

In view of the difficulties (even the impossibility, in case of turbulent
flow) of adequate analytical treatment and since numerical solutions are not yet
obtainable for flow fields of practical size, the aerodynamicist has relied
heavily on experimental data and empirical investigations; this will also hold
true, to an even higher degree, for the workers in the new pure fluid technologye.

The purpose of this chapter is to discuss the necessity of employing
dimensional analysis when relying on the empirical approach in fluid problems
and in particular to present the Stokes-Reynolds Similarity Laws for dynamic
flow circuits.
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l.2 Dimensional Analysis.

le2.1 General.

All phenomena in mechanics are detemmined by a series of variables,
such as energy, velocity and mass, which take definite numerical values in
given cases. Problems in dynamics or statics reduce to the detemination of
certain functions and characteristic parameters; the relevant laws of nature
and geometrical relations are represented as functional equations, usually
differential equations. In purely theoretical investigations, we use these
equations to establish the general qualitative properties of the motion and
to calculate the unknown physical variables by means of mathematical analysise.
However, it is not always possible to solve a mechanics problem solely by the
process of analysis and calculation. Sometimes the mathematical difficulties
are too great, as in the case of laminar flows, and sometimes the problem
cannot be formulated mathematically because the phenomenon to be investigated
is much too complex to be described by a satisfactory theoretical model, as
in the case of turbulent flows In these cases, we have to rely mainly on
experimental methods of investigation, to establish the essential physical
features of the problem.

In general, we begin investigations of a natural phenomenon by
finding out which physical properties are important and seeking relationships
between such properties which govern the phenomenon.

Many phenomena cannot be investigated directly for practical reasons
and therefore to determine the laws governing them we must perfomm experiments
on similar phenomena which are easier and more convenient to handle. To set
up the most suitable experiments, we must make a general qualitative analysis
and bring out the essentials of the phenomenon in question; it is very important
(and time-saving) to select the dimensionless parameters correctlys. They
should be as few as possible, while still reflecting all the fundamental
effectse.

The preliminary analysis of the phenomenon and the choice of a system
of definite dimensionless parameters is made possible by the technique of
dimensional analysis and similarity theory. These techniques have been
developed to a high degree and have been presented by many authors, Langhaar7,
SedovB, etc.

In order to bring out the essential techniques and parameters in the

most concise manner, a simple pipe flow will be investigated, comprising both
a mean flow and an oscillatory component of small amplitude.
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le2.2 Dynamic_and Steady-State Fluid Motion in a Pipe.

Let us consider a round pipe of diameter D and length L with a
sinusoidal oscillatory flow of small amplitude and frequency w over a mean
flow Qu; let the fluid be a viscous compressible gase

All the parameters which seem pertinent to the problem will be listed
below.

le2e261 List of Physical Factors.

Gas Characteristics:

l. Mass density, mean e [}b secz/ft4]
2. Absolute viscosity, mean /LLD [}b sec/ft2 ]
3. Ratio of specific heats kK [0]

4. Gas constant Rg [ft/OR]

Heat Transfer Conditions:

Se Polytropic exponent n [O]

Geometric Conditions:

6. Pipe diameter D [ft]

Te Pipe length L [ft]
Flow Conditions:

8. Volumetric flow, mean Qo [fts/seéj
9, Pressure, mean (absolute) Po [ib/%t?]
10. Temperature, mean (absolute) T, [OR]

Dynamic Conditions:

lle Oscillatory frequency w [rad/sec]
The 1b notation refers to pounds force.

There are eleven parameters listed above; it is quite clear
that the number of combinations and pemutations of parameters will be
extremely large, so that it is quite unproductive to undertake experimental
work for a sufficient variation of each parameter to cover a meaningful range.



As this problem is a basically simple one in the fluid technology
field, matters will be worse when complex fluid circuits will have to be
studied experimentally and understoode Fluids employed will range from air at
stde conditions to gaseous hydrogen at =250°F to hot combustion gases at 2000°F,
in a pressure range from .1 PSIA to 1000 PSIA.

In this very confusing situation, in the absence of an adequate
theoretical treatment, the aerodynamicist looks for his first basic tool, the
Laws_of Dynamic Similarity. The laws of similarity will allow building up an
experimental solution of the problem with data from experiments under different
sets of conditionse.

The laws of similarity will allow the extrapolation of data under
one set of conditions to another and different set of conditions, and will
prescribe the correct conditions for a model experiment to be valid for a
prototype.

The laws of similarity will also serve to classify quantitatively
dynamic fluid regimes for generalized application to complex fluid circuitse.

le2e2a2 List of Dimensionless Parameters.

The following three dimensionless parameters have been found to
be of basic importance for our problem:

1. Reynolds Number Re = U Dgfg
Ay
2« Acoustic Reynolds Number Re, = C D&
A T
~Ho
2
3. Stokes Number s =wp_ &
Ao
where velocity of sound C = V k Rng or n RyTg (depending on heat transfer)
reference flow velocity U= Qo
7 p?
4»

Other dimensionless parameters, which can all be derived from
the first three, have been found useful in particular ways:

4, Strouhal Number St=§_ = wD
U




5 Longitudinal Acoustic Strouhal Number Stta=S_.L=wl
Re D C
A
6. Transverse Acoustic Strouhal Number StTA =8 __=wh
ReA c

Finally, if the mean pipe flow velocity is sufficiently high,
fluid compressibility effect must be accounted for by the mock number.

7. Mach Number Mag=U
<

Fortunately in fluid control technology, pipe velocities are
generally lowe.

Seven dimensionless parameters are listed above; this number is
still too high for indiscriminate application to practical experimental worke
Previous aerodynamic experience, both theoretical and experimental, will serve
to demonstrate the particular usefulness of each parameter to the experimenter.

If the Mach Number is neglected, there are only three basic
parameters, the classical Reynolds and Stokes Numbers and another version of
the Reynolds Number comprising the acoustical velocity in the pipe (instead
of the flow velocity)e.

A discussion will be given below for each parameter, with
supporting experimental evidence and physical interpretation as required.



l.2.3 The Reynolds Number,

The Reynolds Number may be derived from dimensional analysis
Re = UD | £ft ft sec | = [O]
1Y% sec ft2

Furthemmore, it acquires fundamental significance from the fact that
it can be derived from the steady-state Navier-Stokes eqs. of viscous fluid
motione

The steady-state Navier-Stokes eqs. are written in cylinderical
coordinates r and x, with axial flow symmetry, for pipe flow below:

vIv+udv) =_3p+ (32v+_;_ __B_g-v*-a?‘v
@( T gx) ar - 212 T 9r 12 2x2

vdu+udu) =+ 4fd+1 du+ P
¢ ar gx) % ﬂ( 212 T Jr 2 x2

where v is the velocity in the r direction
u is the velocity in the x direction

If now Uy D and P are taken as references of velocity, length and
pressure:

vh = v and u = u_
Uo Uo
¥ = and z¥ = 2
D D
p* =p
P

Then it is obtained for the steady-state Naview-Stokes eqse. after
dividing each tem by é,y_% :
D

At ru 3vE =T B o [ 4] (3% 1 ot uX
ar¥ Ix¥ e @uw | |\
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du” +u =-p__|3p* + | A 92 * el u¥* + 92 ¥
AR Ak [@w:’(gf’&'ﬁ%}? Liv

The pipe flows can become similar only if the solutions expressed

in temms of the coefficients P and| A are identical.
€ v2 L(DUD

. - P . P s s .
The first coefficient E;—Tﬁﬂ is automatically satisfied in incompressible

flow, leaving the coefficient A as the criterion of similarity. This

coefficient is the inverse of thézReynolds Numbere.

For our pipe problem, the Reynolds Number has been found indispensable
for the correlation of steady-state pressure-loss data, regardless of pipe size,
fluid velocity (flow rate) and fluid density and viscositye

A pressure-loss coefficient may be defined as follows:
4P = AL
K D

Figures le2,3-1 .and 1l.2+3-2 show the plot of ,k against Rg.

A "laminar" fluid regime may be defined up to Re = 2000 and a
"turbulent" fluid regime may be defined from R, = 3300. In the "transitional"
area 2000 Re ¢ 3300 there is no clear correlation between )\ and Ree

Analitically, for the laminar case the Hagen-Poiseuille law holds:

A =64
Re

and for the turbulent case the Blasius law holds up to Rg = 50,000s

A = 0316
Re

For both cases, ,k is a function of Rg alone.

Of interest in fluid technology instrumentation is the ratio of mean
pipe velocity to center velocity, because in many cases a center measurement
in a pipe must be made to yield total flow rate.

Again this ratio is only a function of Res, as shown in Figures
1.2.3-3 and 1.243-4. There is to be noted that in the laminar regime this
ratio is constant and equal to 0.5, and that the transitional area is wider,
from Rg = 1500 to Re = 4500.



.50+

FIG. 1.2.53-

401 PRESSURE-LOSS PARAMETER

VS
MEAN- VELOCITY REYNOLDS NUMBER

INCOMPRESSIBLE LAMINAR PIPE FLOW

.30

HAGEN EQUATION
AP L
= 7
-EL‘ u
.20
.10
0 T Y T 1
100 500 1000 1500 2000

1-8




8t L] ] 2zl [ ol < 1 ] 1 4 £ z
L - 4 : o s . 4 620
P 050"
zqz_::l\ - 2¢0°
TR vauy T
NOILISNVM L —— | sc0°

000'0¢ > a4 > 0002
F9€0°
NOI1VND3 SNISVI8
(3did HLIOOWS) - L0
| M0T4 3dId INIINGYAL F78ISSIUIHOINI [
BIGNON STONATY AL10073A-NVIH
SA ¥ILINVEVA SSOT-I¥NSSINd
€191
620" 4 P 2v0°
¥ 9204 L evo-
420" P vv0’
420"+ b §¥0°
, ez0 4 - 9v0°
ogo’ \ \ T T T T T T T T T 1 -490"°
3 82 ez 2 €2 L 2] 4 6| L1} 44 9 s

R [+)
¢.0lx oy




Ol x 2y

MOT4 3dId 3IT8ISSIYINOINI

YIGWAN SQTONAIY ALIDOT3IA-NYIN

‘SA
ALIO0TIA-¥3LIN3ID 0L ALIDOTIA-NVIK 40 OILVY
£-¢21 7914

-“— y3yv AN3ITINBYNL i

oost > %y > 006!

viyyv

NOILISN VYL —————]

v3uv
HYNINVT

9v°

8y’

[X-N

2s°

s’

es”

09°

29°

v9°

99"

oL

2L

v

9"

8L’

o8’

n

1-10




M01d 3did INIINGYNL 378ISSIYINOINI

YIGNON SOTONAIY  ALIOOT3IA-NVIN SA ALI9073A-YILN3D OL ALIDOTIA-NYIN 40 OILVY
b-¢21°914
.0l x ¥y
12 o2 61 1] 1 -] (-1} »l €l 2! H o1 ] e F3
[ S | L [} 1 1 L 4 1 1 1 I 1 i ON.
P Ll
)
—Go T
o O ol
& v o
s a¢ s¢ ve £e ¢ i os 62 82 L2 92 sz vz o

¢ Ol x %

1-11



l.2.4 The Acoustical Reynolds Number

The Acoustical Reynolds Number may be derived from dimensional analysis:
ReA = _CD ft ft sec1 = [01
v sec ft2 | 4

It deviates from the classical Reynolds Number only by the use of the
acoustical velocity C instead of the flow velocity U . Physically it can be
interpreted as the ratio of acoustic inertia to viscous damping or as the
limiting value of Rge

It generally appears in dynamic fluid analysis only as a modifier of the
Stokes Number, in the form _S and _S o

1-12



l.2.5 The Stokes Number.

The Stokes Number may be derived from dimensional analysiss

s =wp? [ft2 sec = [0]
vV sec ft2

Furthermore, it acquires fundamental significance from the fact that
it can be derived from the time-dependent vorticity transport equations.

These equations are transformations of the Navier-Stokes eqs. in temm

of the vorticity vectors Physically the vorticity w is the angular velocity of a
fluid element. In cartesian coordinates x and y, with velocity components u and v:

w=%[2v - 3u
Ix oy

The two-dimensional time~dependent Navier-Stokes equse are reduced to:

dwudw + v dw = L Q%+ 9w
3t 3x 3y @ x>~ 3y2

If the vorticity @, the time t, the coordinates x and y and the
velocities u and v are reduced to dimensionless ¥, t¥, x¥, y%, u* and v® by the
introduction of reference quantities of frequency. () , time T, length D and
velocity V, then the vorticity equation will be governed by two dimensionless
coefficients:

and Y
D2\,

The first coefficient is satisfied automatically while the second
coefficient is the inverse of the Stokes Number.

Stokes' work antedates Reynolds' by more than thirty years, but for
same reason the Stokes Number never achieved the popularity of the Reynolds
Numbere. This is perhaps due to the fact that most fluid work has been directed
toward steady-state phenomena.
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For our pipe problem, the Stokes Number allows a physical interpretation
as a dynamic damping index; it serves to classify dynamic fluid processes into
arbitrary high-damping, intermediate-damping and low-damping regimes.

Experimentally, the Stokes Number will tell the investigator which
frequency parameter to use to obtain a workable correlation for the amplitude
attenuation ratio and the phase angle.

In conclusion, the Stokes Number is as basic to dynamic flows as the
Reynolds Number is to steady-state flows.
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l.2.6 The Strouhal Number.

The Strouhal Number may be derived from dimensional analysis:

St =«D — ft sec = [0]
U sec ft

/ It is not a primary parameter because it can be derived as the ratio

S/Res

It does not contain viscosity and therefore it must be used either for
theoretical "inviscid" flows or for conditions where the viscosity is negligible
(as when the frequency is quite high). Also it has been found useful to
correlate the frequency of self-oscillating fluid phenomena with the characteristics
of the parent steady-state flows; here it would be plotted against Re.

An example of "inviscid" flow application is given in Figure l.2.6-1,
from the theoretical work of H. G. Elrod (Ref. 10), for pulsating flows in
conical nozzlese The Strouhal Number is plotted against amplitude attenuation
factor and phase angle for several subsonic Mach Numbers.

Obviously here the Stokes Number would not be applicable because of
the absence of fluid viscosity from the analysise.

Two examples of self-oscillating fluid phenomena arising from steady-
state flows are given in Figure 1.2.6-2 (the Kamman Vortex Street) and in
Figure l.2.6-3 (typical Edge-tone)s In both figures the Strouhal Number is
plotted against the Reynolds Number.

A third example of self-oscillating fluid phenomenon arising from steady-
state flows is given in Figure l.2.6-4 (acoustic gap radiation). Here the
Strouhal Number is plotted against Mach Number, for a given range of Reynolds
Number (laminar boundary-layer flow over the plate), because the Mach effect
predominatese.
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l.2.7 The Longitudinal Acoustic Strouhal Number,

The longitudinal acoustic Strouhal Number is a special form of the
Strovhal Number, where the pipe length L is used, rather than the diameter D,
and the velocity of sound C is used, rather than the flow velocity U,

Stip = @b
C

It can be derived from the Stokes Number, the Acoustic Reynolds Number,
and the pipe aspect ratio.

Styp = 5L
Req D

It is used as the frequency parameter in the low-damping regime, where
the acoustic effects become predominant.
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l1.2.8 The Transverse Acoustic Strouhal Number.

The Transverse Acoustic Strouhal Number is a special fomm of the
Strouhal Number, where the velocity of sound C is used, rather than the flow
velocity U.

s = wD
1a 2

It can be derived from the Stokes Number and the Acoustic Reynolds
Number: .

StTA = S

ReA

It is used as a limiting criterion for the application of simple
longitudinal-wave acoustic theory in a pipe because it predicts the onset
of transverse acoustic waves.

The lowest transverse acoustical mode in a pipe is the first
asymmetrical mode, which occurs at:
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1.2.9 The Mach Number.

The Mach Number is the ratio of flow velocity U to the velocity of
sound C. Above a Mach Number value of 0.2 to 0.3, the flow pattern will
begin to change because of the fluid compressibility. In general pipe flow
velocities are kept low (M ¢ 0.2) to reduce pressure losses.

In the active amplifiers, however, analysis of the jet may require
the application of Mach Number because velocities may be high, even
supersonic.
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le3 Laws of Stokes - Reynolds Similarity.

For two pipe flows of equal 115‘ ratio to be equivalent in both steady
and dynamic states, the three basic dimensionless parameters #l, #2 and #3
must be equale This, of course, applies if the flow velocity is low enough
that Mach Number effects can be neglecteds Otherwise four parameters must be
kept equal. '

Using subscript 1 for the one flow and subscript 2 for the other flow,
it can be written:

Ry, = U1 D2

wonol® (1)

/‘(1 /(2
= CD;, @ = CoDy L.
Re, = C101 &1 282 (2)
eaA T . o
D,2 w.p>
s = @D2@ - W, @, (3)
/“1 A 5
From ede (1)3
Az = B D & (4)
M Uy D1 @;
From eqe (2):
42 = G Dy @, ()
A G D @
From eqe (3):
My = wy DZ @ (6)
A5 @) D]_2 C1
Since all three eqs. must be valid by definition:
Y2 D @ = G D @ - w, D2 @, (7)

Uy D @, Ci D @3 w; p? @
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Therefore: U = _5_2_ = Wy ____D_2_ (8)
U1 C1 QJl Dy
and Uy = Co= Wy D
Ul Cy w, Dy Stokes-Reynolds
Similarity Laws
_52.= U2 - ‘”2 D2

Constant Fluid (9)

1 C; Do Uy Do Viscosity

Again from eqe (1):

Dp= U@y = U Gy (10)

— —— ———

Dy A U2 U, @2,
and from eq. (2):

Dy = G0y = G @ A (11)
Dy Ay Ca@2 > Co A

and from eq. (3):

_D_zé =My - Wy @)
Dy M@, 06, W, @5 M (12)

Since all three must be valid by definition:

itz - GOk - (m)h (Gt
Uy, Co M C, @o A1 s )&

Therefore:

U (G (/“21 = G (Ci: (ﬁgf w1l
U \@2) \*1 C, \@ A w,
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Thus:

Stokes-Reynolds
L 1 L
Co= U= [wrlz (@Y [mp)e Similarity Laws
Cl Uy Wiy 02 A1 £
or
up=( U @y My =(C 2 41 | constant
wy \U) @1 M2 &) @1 A (15)
Pipe Diameter
A = ”2)2 wy @a= [ C\2 @ @y
Ay U] w, @, C;] w2 @1
C2= [0} 22 Ma= [O1F 2 4
& Uy | W) <, Cr] W) «;

Interpreting the results of eq. (9), it is seen that scaling procedures
are prescribed for the velocity U, the velocity of sound C, the frequency
and the pipe diameter D if the fluid viscosity 4« is kept constant. The mass
density (2 does not appear in the similarity laws for constant fluid
viscosity and therefore it does not need to be considered.

The absolute temperature T enters into the problem through the velocity of
sound C = }/ RgqTg. The thermodynamic fluid properties k and R_ enter only
through the Vegocity of sound, as shown above. 9

Interpreting the results of equation (15), it is seen that scaling
procedures are prescribed for the velocity U, the velocity of sound C, the
frequency @, the fluid viscosity 4 and the fluid mass density (® if the pipe
diameter D is kept constant.

The absolute temperature T enters into the problem through the velocity
of sound C = 1/ RgTg, through the temperature-dependent fluid viscosity «{and
through the fluid mass density @ .

The themodynamic fluid properties § and R enter the problem through
the velocity of sound, as shown above, and through the fluid mass density C.

The absolute pressure does not enter the problem except for a minor
influence on «¢¢ .
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It remains to demonstrate explicity that both the steady-state
characteristics (pressure-loss coefficient and transverse velocity distribu%ion)
and the dynamic characteristics (amplitude attenuation ratio and phase angle)
are maintained between a model pipe flow (subscript 1) and a prototype pipe
flow (subscript 2) if the Reynolds Number, the Acoustic Reynolds Number and the
Stokes Number are kept constant.

It is well known and it has been summarized in Section 2.2.1 that all
steady-state characteristics are dependent only on the Reynolds Number (in the
absence of Mach Number effects). In Chapter 2, Volume I it has been shown
theoretically that the amplitude attenuation ratio and the phase angle are
functions (for a given geometry) of a parameter X o 0r Z and of the Stokes
Number. The choice of X, or Z depends on the range of the Stokes Number.

Now XTO =w Mo (L)2

However A, =(% Vo

and nppy = nRng = 2 (polytropic velocity of sound)
o)

Thus XTo = Yo g.lz)z

c2 D)

nd = [wp2 2 \2 = s \2
e X (&) e

It is seen that, since the L ratio is constant by definition of
geometric pipe similarity, then the parameter Xy, depends only the the
Stokes Number and the Acoustic Reynolds Number.

If these two numbers are constant, then YTo will be constant.

Furthermore Z=WL = Stia (the Longitudinal Acoustic Stroubal Number)
C

and Z =wp?y = [wp? Y L
C D2y )Y CD D

thus Z=3 (_I:)
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Again the parameter Z depends only on the Stokes Number and on the

Acoustic Reynolds Number, the ratio % being constant by definition of geometric
pipe similarity.

Therefore, if the theory of Chapter 2, Volume I is even qualitatively correct,
all the flow characteristics, both steady-state and dynamic, are maintained if
the three basic dimensionless parameters, Reynolds Number, Acoustic Reynolds
Number and Stokes Number, are constant.

For convenience of application of the Similarity Laws, the viscosity and
mass density of air at 60° F and of gaseous hydrogen at -250° are given in
Figure 1l.3-1, plotted against absolute pressure. It is seen that the two

gases have substantially different characteristics, which will be reflected
in the scaling ratiose.
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1.4 Conclusions.

It has been shown that the steady-state and dynamic flow of a viscous
compressible fluid in a pipe depends only on three dimensionless fluid
parameters, i.e. the Reynolds Number, the Acoustical Reynolds Number and the
Stokes Number, plus the geometric pipe aspect ratio.

Similarity (scaling) laws have been derived for the case of constant fluid
viscosity and for the case of constant pipe diameter. These will pemit the
extrapolation of experimental data, amplitude ratio and phase angle, to other sets
of conditions,
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2. PASSIVE CIRCUIT ELSMENTS

The passive fluid elements of most interest to the fluid circuit
designer are tubes and orifices. The pressure-flow relations for these
elements have been extensively investigated, both analytically and
experimentally. 1In this section, these relations shall be presented and
discussed. The general equations apply to any flnid. However, air is
probably the most widely used control fluidg, particularly in the pure fluid
(no moving parts) control field. For this reason, specific examples of
many of the general equations shall be given for air at room temperature.,

2.1 Steady State Flow
2.1.1 Reynolds Number

In fluid control circuits, the pressure-flow relationship for
fluid fiew through a round tube is of interest. 1In this case, as in all
fluid flows, the transition between laminar and turbulent flow depends upon
the Reynolds number

Ry = (;:’D (1)
where

© = the fluid density

U = average fluidg velocity

D = diameter of the pipe

!

= viscosity of the fluig

It has been found by experiment in a great many physical situations
that for Reynold's numbers less than 2000 the flow is always laminar. For
Reynolds numbers greater than 4000 the flow is always turbulent. In between
Reynolds numbers of 2000 and 4000 the flow can be either laminar, turbulent,
or in a transition Stage, depending upen conditions., In the transition stage,
no known law serves to describe the fluid behavior.

The fluid current, or the weight flow down a tube, is given by
I=»Q (2)

where ¥ is the specific weight of the fluid and Q is the voiume flow through
the tube. In terms of weight flow the Reynolds number becomes
471
Re = ~ann (3)
7/ quD

where D is the diameter of the tube. This can be rewritten in terms of a
reference current Ir as

Re =TIr (4)

Where




For air, g M = 1076 1bf/sec-in. Therefore

I, = 7.89 x 10- (6)

The flow through a tube enters the trznsition region between
laminar and turbulent flow at 2000 Ip and leaves it at 4000 Ip. Plots of
I versus D, showing the fluid flow regions is given in Figure 2.l.1-1.
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2.1.2 Flow Throuagh Constant Cross Sectiosn Tubes

In the laminar flow region, the oressure drop, P, across a tube
is given by (Reference 1).

AP = ai + b2 (1)

where T is the average velocity of the fluid down the tube and'a and'b are
constants. In this equation, it is assumed either that the fluid is a liquid
and has a constant density, or that the pressure drop across the tube is so
low that the fluid has a negligible density change in flowing through the
tube.

The term bu2 is a kinetic energy term and represents the energy
required to accelerate the fluid from zero velocity to the average velocity
within the tube. For long tubes this term will be small compared with the
term au and can be neglected. Neglecting the kinetic energy term the pressure
valocity relationship is (Reference 1)

ap= ZHEE (2)

where
/AP = Pressure across tube drop in psi
M = Viscosity in 1bf—sec/in2
L = Length of tube in inches
T = Average fluid velocity in inches/sec
D = diameter of tube in inches

The pressure drop in a tube when the flow is turbulent is found to
be proportional to

_2

_LPu (3)
D

Although in laminar flow the pressure is proportional only to the first

power of the velocity, the pressure drop is often considered as being
proportional to the above expression. Under this assumption, the proportionality
factor cannot be constant. The result is

_2
- LP
AP = 352- (4)

where >\is a dimensionless constant of proportionality.

In terms of the Reynold's number Ry this can be rewritten as:
A= 64/R, (5)

Hence the proportionality factor,>\, when plotted as a function of the Reyncld's
nurber yields a straight line. The same result ic obtained in the turbulent
region only the straight line has a different slope. Plots of versus Ry in
these regions is shown in Figure 2.1.2-1. This figure, with apprcpriate values
of density, viscosity, and tube Adiameter appliss to the flow of any flnid

2-4




TNEH IKETY 37
9

i

7] 1) JENE
H

T

2

IRERERERE
RN EEREE

i

il ite

id flow through round tubes

Figure 2.1.2-1 R versus ) for flu



through any pipe. In this figure, it has been assumed that the pipe is
smooth on the inside. Under this assumption, the resistance properties of
tubes to finid flow can be determined.

In terms of the fluid current I, the pressure-flow relation of
equation (2) becomes

AP = 128 pL1 (6)
DT Y
where: I = fiuid current in lbs/sec

y= specific weight of the fluid in lbf/in3

Solving for I gives

gty 7
1= - ar ()

Equations (6) and (7) are the expressions relating fiuid current and pressure
drop for a tube in the laminar flow region for an incompressible fluid.

For turbulent flow the eguation relating>\ and R, is

N\= c/r, /4 (8)

where the dimensionless constant C is experimentally found to be 0.316.
Substituting for the equivalent of

>\: 2ApPD (9)
€ 5L
and Re’
PTD
Rp = (10)
¢ A

in equation (8) and rearranging gives,
s ctut %]
(ap)* = === (11)

In terms of the fluid current I this becomes

7/4 1/4 7/4 .
R

N 4/7 93D19 1/7 4/7 .
I - 4) <%cf> ( 2 (AP) (13

These equations can also be written in a dimenionless forme

—~
~—r

NDefining a reference fluid resistance R. by

g%y
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Sqration (6), the pressure-flow relation for laminar conditions, reducess to
AP =RI (15)

In dirensionless form this becomes:

Ap -1 (16)

R,I I

T

The arameter)\ can be written as
p

_Ap Ir | 62
)\“_'i . I > (17)

From equation (8) and (17), the pressure-flow relation for the
turbulent case becomes

7/4
Ap = CRe(1) 7 (18)
64 (I;) 3/4
This can be rewritten as
7/4
Ap = C (1 / (19)
R.I 64 I
since C/gq = .00495 this becomes
7/4
_APp =.00495 [T / (20)
RrIr Ir

Equations (16) and (20) are plotted in Figure 2.1.2-2. It is easily seen
that Figure 2.1.2-2 is essentially the same plot as that of Figure 2,1.2-1.
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2.1.3 Flow Throuch Orifices and Nozzles

In fluid control circuits constrictions are used to impede the
flow of fluid through a pipe. In this sense, they are the equavalent of
electrical resistors which impede the flow of electrical current.
Constrictions are termed either nozzles or orifices depending upon their
construction. The distinction is that a nozzle has a smooth gradual transition
from the line diameter down to the constriction diameter; whereas in the
orifice, this transition is abrupt. A sketch showing this is given in
Figure 2.1.3-1.

The construction of a nozzle usually requires careful shaping.
The constrictions found in many fluid control systems are quite small -
perhaps 010 to .075 inches in diameter. It would be difficult to machine
nozzles of this size. Hence, the constrictions used in fluid circuitry are
usually just drilled holes and are properly called orifices, The pressure-
flow equations of orifices and nozzles are the same, and the equations for
orifice flow can be used for nozzle flow with appropriate changes in the
constants,

The fluid flow through an orifice depends, among other things, upon
the pressure drop across the orifice, oS shown in Figure 2.1.3-1., the higher
pressure is termed the upstream or supply pressure, and is indicated by Pys
while the lower pressure is called the discharge, downstream, or back
pressure, and is indicated by Py .

The volume flow of an incompressible fluid through a nozzle or
orifice is given by (Reference 3).

Q=CA 2g(P; - Py)
1 - 2! (1)
ve
where
Q = volume flow in inches3/second
P, = pressure upstream from orifice in psi
P2 = pressure downstream from orifice in psi
g = acceleration of gravity in inches/sec?
¥ = specific weight of fluid in lbf/inches>
A = area of orifice in square inches
C = flow coefficient (dimensionless)
The weight flow rate, I, in pounds per second is given by ¥ Q,
or

I=CA \lzgﬂpl-pQ) (2)

For compressible flow, the right hand side of (1) is multiplied by
a dimensionless expansion factor Y. The compressible volume flow is then
given by

Q=CYA | 29(?1 - P2)
¥
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Flow Direction
—————

N—

Pl Pt P2

/

a. Nozzle

Flow Direction

b. Orifice

P' = Upstream or supply pressure
P, = Downstream, discharge or back pressure
Ry = Throat pressure

Figure 2.1.3-1 Cross sections of a nozzle and an orifice.
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where Y1 is the specific weight of the fluid at the inlet to the orifice.
The mass flow is given by

I=cyaA Vzgm(pl-pg (3)

The flow coefficient C depends upon the Reynolds number and the
ratio of the orifice diameter to the inlet tube diameter. The expansion
factor Y is a function of the specific heat ratio k, the ratio of the
orifice diameter to the inlet tube diameter, and the ratio of the downstream
to upstream absolute pressures.

The equation for the compressible flow through a nozzle or orifice
can be put in a more useful form by noting that

¥1= Yo .;.’l (a4)

o]

where &, 1s the specific weicht of the fluid at atmospheric pressure, and
P, is atmospheric pressure. From equations (3) and (4),

I=YCA \/ 29y,P(P1 - Pp) (5)
pO

For air, ¥ = 4.34 x 1072 1bf/in3, and

1
fg roj! ® = .0477/sec (6)
p0

Equation {(5) then reduces to

r——“—————-
I= .0477Y C A \/ P (P; = P,) (7)

In terms of the orifice diameter D, this becomes

I=.0376 Y C D? vpl(pl - P,) (8)

where D is in inches.

Consider the case where a compressible fluid at a supply pressure
P, is discharging through an orifice or a nozzle into a reaion having a static
pressure P,. The pressure at the throat of the nozzle or at the orifice will
be indicated by Pi.

Visualize starting out with the 5upp1{ chamber pressure P; equal
to Py« Now decrease the discharge pressure P, keeping Py constant. The
static pressure at the throat of the nozzle Pt remains equal to Py until Pp
reaches some critical pressure P¥. At this point Pt = Py = P*¥. When Py

is lowered below the critical pressure, P¥, it has no further influence upon
the pressure at the throat. The throat pressure Py remains equal to P¥. The

2-11



ratio of the critical pressure P* and the supply pressure Py is given by,

pr _ [ 2\ k/(k+1)
/

where k is the ratio of the specific heats.

As P, is first lowered, the velocity of the gas flow at the throat
increases. When P, drops below P¥, the velocity of gas issuing through the
throat no longer increases, but remains equal to U¥, The velocity u¥* is
equal to the speed of sound for the compressible fluid undergoing the flow and
at the temperature and pressure conditions at the throat. The fluid flow
through the orifice has the maximum value which is attainable for that
particular orifice and supply pressure P;- This is termed the critical flow
or sonic limit.




2.1.4 Flow and Expansion Coefficients

Flow equations for orifices are often written in terms of a
dischange coefficient Cq rather than the flow coefficient C. This is
permissible only when the fluid velocity upstream from the orifice is
negligible. This in turn depends on the ratio of the orifice diameter D to
the diameter of the upstream tube Dye The relationship between C and Cq is
(Reference 4).

Cq

V 1= (o/p,)*

(1)

For ratios of D/Dy < 0.4, C is found to be independent of N/D,
within a neglible error. A plot of C for Reynolds numbers of 10,000 and
below Figure 2.1.4-1 for D/D, <0.4. Above this range, and for the same
range of D/Dp the flow coefficient is nearly equal to 0.6.

The expansion factor Y is experimentally determined, and when
plotted as a function of the ratio of the pressure drop across the orifice
to the pressure upstresam to the orifice is a series of straight lines. A
plot of Y for air is shown in Figure 2.1.4-2. 1In many cases it is convenient
to have a plot of the expansion factor as a function of pressure drop acrossed
the orifice when the downstream pressure remains constant at atmospheric
pressure. A plot of Y for air under these conditions is shown in Figure
2.1.4-3.
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Figure 2.1.4-2 Expansion factor for air.
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2,15 Flow Through Short Tubes

The previous discuscions on orifice flow are derived for and have
been experimentally verified for orifices which have sharp edges. In fluid
circuitry and control systems many of the orifices are quite small and ars
made simply by drilling a hole throuch a plate having some thickness.

Consider 0,015 inch diameter hole drilled through, a 1/32 inch
plate. This is no longer a sharp edged orifice but a short tube. Experiments
have been performed upon elements in this range (Reference 3). It was shown
in the study that the same law holds as for the sharp edge orifice. To use
the data, the appropriate discharge coefficient must be known.

The flow throuagh a tube has been shown to depend upon two dimension-
less numbers (Reference 2)

eApp? (1)
2
and
_£Q (2)
D

A plot of experimental results is shown in Figure 2.1.5-1. The slope of
the line in this log-log plot is very nearly 2. Consequently the relationship
between the dimensionless numbers (1) and (2) can be expressed as

par’/ 2 = keo/npu) (3)

From examination of Figure 2.1.5~1, it is seen that the constant k in equation
(3) is very nearly equal to 1. The equation then reduces to

Q = D3| /AP
€

which can be expressed in standard form as

q=A [2hvf (s)
For an in compressible fluid,

a=ca |2irp (6)

It can be seen from equations (5) and (6) that the flow coefficient C is
approximately egual to

c=4=.32 (7)
/

P

=~

For a compressible gas, equation (6) would become

0=CYA m (8)
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ionless plot for flow through a short tube

5-1 Dimens

L.

Figure 2

2-18




the weight flow is then

I=CYA l/zga’lAP

Where S1 is the specific weight at the inlet to the short tube.

From this it is seen that short tubes can be treated as orifices.
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2.1.7 Laminar fluid jets

Laminar, free, fluid jets are useful in fluid circuitry. Consider
the arrangement shown in Fiqure 2.1.7-1. A jet of fluid emerges from the
left hand supply pipe and flows into the collection pipe on the right hand
side. As long as the fluid jet emerging from the supply pipe is laminar,
most of the flow and pressure can be recovered in the collection pipe. To
obtain this condition it is necessary to carefully smooth the exit of the
supply pipe so that turbulence is not introduced into the free jet; say by
a burr or other irregularity on the supply pipe exit. Under proper conditions
the free jet can remain laminar for a distance of over 100 times the inside
diameter of the supply pipe.

The free jet can be acted upon in the region between the two pipes by

either mechanical means or by other fluid streams. This is the basis for
the turbulence amplifier.
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2.2 Circuit Parameters of Passive Fluid Elements

2.2.1 Electrical Analogy and Equivalent Parameters

The analysis of pure finid circuits is readiily handled bv using
electrical equivalent circuits of the fluid circuit. In making this analogy
the pressure drop is analogous to voltage and the flunid flow corresponds to
electrical current. The resistance of a fluid element is defined as the
pressure drop across the finid element divided by the flow through the
element.

Probably the most common measurement of flnid flow is the volume
of fluid which flows through the element per unit time. For hydranlic circuits,
wihere the compressibility of the working fluid is negligible volume flow is
an adequate definition of fluid current. However, for pneumatic or other gas
circuits this definition will not always suffice. For example, the volume
flow at different points along a long thin tube will be ditferent. The fiuid
current should be a constant.

Since the changing volume flow at different points in the tube, or
other device, would make the definition of the fluid resistance imprecise,
if not impossible, it becomes necessary to use some other measure of fluid
flow. The logical flow to use would be a mass flow since the mass flow at
various points in a long, thin pipe, or any other fluid element, would be
constant, assuming steady state conditions. Since the weight flow is
proportional to mass flow, it is equally useful, and flow in lbs/sec has
been selected as a standard in fluid control work (Reference 5).

The steady state fluid resistance, R, of a fluid element is the
pressure drop/\P across the element divided by the flow, I, through the
element, or

R= AP/I (1)

In any specific case, the static fluid resistance is readily found by
measurement or from a plot of P versus I.

The graphical determination of the incremental, or small signal
resistance,(}zkp/ JI, poses no problem as long as the plot of P versus I
is on a linear scale, since then the slope of the tangent to the curve is
the desired incremental resistance. However, it is often very convenient
in flnid work to make pressure-flow plots on a log-log scale. In this type
of plot, the geometrical slope of the P-I curve does not have such a direct
relation to the desired incremental resistance. The relationship is simple,
however, and is readily found.

At any given values of pressure drop,/\P, and flow, I, the relation-
ship between the two factors can be approximated by

Ap = k" (

N
~

On a log-log plot, this approximation will plot as a straight line, tangent
to the P-I curve at the point under consideration.
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The incremental resistance is

R

;= LgAi = nxin1 (3)

The factor n is the slope of the tangent, in appropriate units, at the
operating point. It is readily seen that if the length of the logarithmic
cycle on each axis is the same, then n is the geometric slope of the tangent
at the point at which the resistance is desired. Multiplying the top and
bottom of right hand side of equation (3) by I and using equation (2), it

is seen that

R: = nR (a)

i
where R is the steady state fluid resistance defined above.

In working with fluid resistances, and particularly if the fiow is
compressible, it is often easier to find the resistance of any given element
from plot of flow versus pressure rather than to calcnlate it.

It should be noted that the incremental or small signal resistance,
as defined above, assumes that the steady staté condition holds for small
transient or cyclic deviations from the steady state. The small signai
resistances could properly be labeled quasi steady state, and it shonld be
reorganized that as the frequency becomes high, the above given definitions
for small signal resistances are no longer valid. The frequency limitations
are discussed in section 1 of this volume. Tha same discussion would apply
to the capacitances and inductances to be defined later.

2-23



20202 Resistance of Tubes = Incompressible Flow

The relation between the fiow-through through a tube and the
pressure drop across the tube in the laminar flow reaion is given bys

128 u LI
AP = 7ﬁ5ﬁE§7‘ (1)

Since the fluid resistance is the pressure drop across the tube divided by
the fluid current, the resistance of a tube in the laminar flow region is
seen to be:

128 L )
Eiks

It is seen from this expression that in the laminar flow region
and for an incompressibie fiuid, tubes act as linear resistors, i.e.,
their resistance is independent of the pressure drop across the tube,

For small pressure drops, air can be considered as an incompressible
fluid. For air at 68° and atmospheric pressure, M= 2.6 x 10-9 1bf=sec/in2
and Yo = 4.35 x 103 1bf/in3° Putting these values in equation (2) gives

R = 2.44 x 1073 1/D* psi-sec/1b (3)

for the resistance of tubes to an air flow. A plot of equation (3) is aiven
in Figure 2,2.2=1 and 2.2.2-2,

In some instances the conductivity Y = 1/R is more useful than the

resistance itself. The expression for Y is

Y = 410 D*/L  1b/psi-sec (4)
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262.3 Resistance of Tubes - Compressible Flow

Ir those cases vthere the density variation of the finid from one
end of the tube to the other is not negligible, eguation (1) of Section 2.2.2
will be inapplicable and must be integrated in order to give the correct
pressure-flow relationship for a tube.

Writing the specific weight as:

¥ = ¥oP/Po (1)
the expression for the pressure drop in the laminar flow region for a pipe
AL inches in length becomes: »
AP = 128;150 IAL (
i Yo

This equation, as it stands, is only valid for small AP. Now consider a
section of a tube AL = dx in lengthywith a pressure drop AP = dP across

it as shown in Figure 2.2.3-1. Applied to this section of tube, equation (2)
becomes:

pgp = 128 4Pol dx (3)
704y,

Defining R by
128 uL

Ry, =
//7 D4 )/o

(4)

equation (3) becomes

pap= Fo Po I ax (57

L

In Figure 2.2.3-1, let the pressure at x; be P, and the pressure
at xy be Pé, where the pressure P; 1s greater than~the p}essure Py. let Xy

and xp be the coordinates of the ends of the tube. Integrating equation (5)
gives:

2 P2 R, P, 1
Py = P Ry Py
1 = (X2 - X]_) (6)

2 L

The term (x, - x;) is simply L, the length of the tube. Noting
that

p% - p§ + (Py = Pp) (P; + Pp) (7)
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Figure 2.2.3-1 Parameters relating to compressible flow through a tube.
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reduces equation (6) to

AP(Py + Py) = 2R, P I (8)
Solving for AP gives
AP = Rol 2 P, (9)
Pl¥P
The current I is given by
1 =|2P P1tP (20)
RO 2 po
Substituting for R, gives
4
/11D P; + P
Yo AP arr2 (11)
128 pL 2 P,

This is the expression for the fluid current which wiil flow
through a tube of finite length L under a pressure drop across the tube of
magnitude AP, where P; and Py are the absolute pressures at the input and
the output ends of the tube respectively. As long as the flow remains
laminar, the equation is valid whatever the density variation throughout
the length of the tube.

From equation (11), the fluid resistance of a tube for laminar,
compressible flow is found to be:

R=18 4L 2 %o (12)
7YY P, + P,
or
R = Ry 2 Po (13)
P1 + Po

Ro is seen to be the resistance the tube would have for the same fluid if
it were incompressible. Since P; and P, are not constant, the resistance of
a tube in the laminar flow region is not a constant for a compressible fluid.

In equation (11), an expression for the flow through a tube as a
function of the pressure drop across the tube, the absolute pressures at the
ends of the tube, the dimensions of the tube, and the fluid characteristics
is given. Let us now specialize this equation to that case where the tube
is always discharging to atmospheric pressure. In this case, Pp = Pye Then,

P, = P, + AP (14)
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The expression AP(P; + P,) then becomes

AP (P + P) = AP(AP + 2P,)

(15)
This can be factored to give
AP(PL + Po) =AP 2Py (1 +AP/2Po) (16)
Applying this to equation (8) and solving for I results in
1= AP (1 +Ap/2p,) (17)

Ro

In equation (16), 2Pys was factored out of the pressurs expression.
The resulting correction factor (1 +AP/2P,) is seen to be useful for small
pressure drops. IfOP is factored out rather than 2P,, there results

AP (P1 + Po) = AP2(1 + 2Po/AP) (18)

This correction new factor is (1 + 2PO/ZSP) and is useful for computation
at hiak rather than low pressure drops.

Using equations (8) and (18), the pressure-flow relationship can
be written as

A2

3 T Ts (1 + 2P,/AP) (19)

In those regions where the pressure drop/P is large enough that the
correction factor (1 + 2Po/AP) becomes essentially one, it is seen that
the current I is proportional to the square of the pressure drop.

Choosing units for I such that Ry, = 1, neglecting the correction
factors and noting that 1/2P, = .034 equations (17) and (19) become

I =Ap (20)

and

I=.034 AP? (21)

respectively. These two equations represent asymptotic limits for the flow.
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The behavior and slopes of the two asymptotic lines are given by
iines-a and b in Figure 2.2,3-2, The exact value of the current can be
obtained from either equation (17) or (19), and is given as curve -c in
Figure 2.2.3-2. The equation of curve-c is

-
Il

AP(1 +Apr/2p,) (22)
or

.034AP? (1 + 2P,/AP) (23)

-
1]

From curve -C, the flow through any tube can be found by the use of
appropriate multiplying factors.

Curve -c of Figure 2.2.3-2 indicates that the flow is approximately
proportional to the pressure drop, i.e., the resistance is linear, up to
pressure drops of 2 or 3 psi. These results were derived for smooth tubes.
In actual practice, the linearity usually holds for a much higher pressure
drop. An example is shown in Figure 2.2.3-3 for a capillary tube 0.008
inches in diameter and 1.78 inches long.

In fluid circuits, one consideration which 1imits the allowable
length of small-~tube, laminar resistors is that of transit time. In
situations where it is necessary to limit this, the laminar resistors should
be kept as short as possible.

Let us consider one-inch lengths of small tubes (.005 to .015 inches
in diameter) used as laminar resistors. Considering the fluid as incompres-
sible, the flow as of function of pressure drop is given in Figure 2.2.3-4,
Noting that the resistors become nonlinear when the flow leaves the laminar
region, it can be concluded from Figure 2.2.3-4 that the larger diameter
tubes become nonlinear at very small pressure drops. Stated in other words,
the larger the tube, the smaller the allowsble pressure drop above which the
resistance becomes nonlinear.

In the turbulent flow region, the pressure-flow relation for smail
density variations is

CR,I I 7/4
- r+r 4
AP 32 (Tr_) (24)
Considering a small element of tube dx in length this becomes
7/4
- CSRolr L
Pdp= 33 (Ir ) dx (25)
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Figure 2.2.3-3 Experimental data for a tube resistor.
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Integrating and rearranging gives
32 Iy

7/4
AP(P1+ Py) = 2CRolrPo (..I_) / (26)

solving for AP gives 7/4
Ap= SRolr [T 2 Po (27)
32 Ir pl + P2

The expression for I is

4/7

1= 1, 3R2AP . [P1t+ P (28)
CR,I. 2 p,
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2.2.4 Resistance of Orifices - Incompressible Flow

The weight flow of an incomprssible fluid through an orifice is
given by

I-ca |20Y(p) - Pp) (1)

or setting Py - Pp = AP,

I =CA YZg AP (2)
Lumping the constants together,
=BJAP (3)

where(—>B = C A |29 y . From equation (3), the orifice resistance

(AP/T) is aiven by
R:.Z_BA___—P— (4)

The orifice resistance is seen to be nonlinear, increasing with the pressure
drop across the orifice.

From equation (3), the incremental resistance (JAP/JI) is found

R. = 2YAP
B

to be

(5)

or,

Ry =2 R (6)

Hence the incremental orifice resistance is twice the steady state value,

Both the steady state and the incremental resistance are independent
of the absolute values of the supply and discharge pressures, depending only
upon the pressure drop across the element.




2.2.5 Resistance of Orifices - Compressible Flow

The flow through an orifice is given by

I=vcA 29 yoP1(P=Pp) (1)
Po

The fluid resistance of an orifice is hence given by

_ Ap
i @)

Where AP = Pj-Pp, The resistance of an orifice is seen to be highly nonlinear,
and the best way to handle flow problems through orifices is through the use
of pressure-flow plots. Two cases are of importance; a constant discharge-
pressure with a variable upstream-pressure and a constant upstream~pressure
with a variable discharge-pressure. They shall be discussed in that order.

In the case of air flow through an orifice where the orifice discharges
to a pressure, Py, the orifice flow equation is

I= .0376 YOI m (3)

when Py is atmospheric pressure, this reduces to

I=.0376 YC0? Y12.7 YAP {1 +AF/14.7 (4)
or
I=.144 Yo? [P V1 +Op/14.7 (5)

This equation can be considered to be the product of two expressions
I=.144 cD?JAP (6)

and a correction factor

Y \1 +Apr/14.7 (7)

Equation (6) is plotted as line-a in Figure 2.2,5-1 for C = D = 1.
When the correlation factor of equation (7) is applied, the line is shifted
to the right as indicated by line-b in Figure 2.2.,5-1. These equations are
only valid to the sonic limit, that is, they are only valid up to the pressure
drop at which the flow through the orifice becomes choked. Above this a
different expression must be used.
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For small pressure drops, equation (6) suffices to describe the flow
through an orifice. A plot of equation (6) for C =1 and a variety of diameters
is given in Figure 2.2.5-2,

For choked flgw through an orifice which is discharging air to
atmospheric pressure, P” is

P* = 524 P, (8)

where P* is the throat pressure and P, is the upstream pressure. When the
orifice flow is choked the throat pressure will always remain at .524 Pi. In
this case the expression for the flow through the nozzle becomes

-
I

= .0376 YCD? Vpl (P; - .524 Pp) (9)

This in turn reduces to

I=.026 YCD?2 Py (10)

Since the ratio P*/P, is a constant for choked flow, the expansion
factor for the orifice will remain a constant. For the conditions considered
here and for small D/bo ratios, the expansion factor Y is found to be equal to
0.86. In this case, equation (10) reduces to

I = .0224 CD? P; (11)
Now, writing Pl as

Py =AP + 14,7 (12)

equation (11) can be written as

I=cp? E0224 (AP + 14,7}’ (13)

which reduces to

I=C0? (.33 + .0224/AP) (14)

The choked flow through an orifice can be considered to be the sum of two
expressions, a constant and an expression involving AP. Setting C = D = 1,
the portion of the sum which is a function of AP is plotted as line-a in
Figure 2.2.5-3. This factor plus the constant term is plotted as line-b in
Figure 2.2.5-3, which gives the air flow through a choked orifice which is
diecharging to atmosphere for C = D = 1.
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The curve of the choked flow through an orifice, as given in
Figure 2.2.5=3, and the curve of Figure 2,2.5~1 for the unchoked flow
<hrough an orifice, fit smoothly together, giving a complete curve of
flow through an orifice which is discharging to atmospheric pressure. The
complete curve is shown in Figure 2.2.5-4. 1In this figure it has again
been assumed that C and D are both equal to 1. By applying appropriate
multiplying factors to Figure 2.2.5-4, the flow through any sized orifice
can be found for a wide range of pressure drops. Such a plot is given in
Figure 2.2.5-5 for a value of C = 1 and a variety of orifice diameters.

The flow of air through an orifice of diameter D is given by
equation (3). For the case where the upstream pressure P, is a constant
this is conveniently factored as

I = .0376 YCD? V?l\}Ap (15)

Let us now consider the case where C = D = 1. Neglecting Y, that
is setting Y equal to 1, and setting P; = to 114.7 psia (100 psig), equation
(15) becomes

I = .376 AP (16)

This equation is plotted as line-a in Figure 2.2,5-6. Considering the
expansion factor Y, the actual pressure-flow curve becomes that shown as
line-b in Figure 2.2.5-6. Note that in line-b the flow continues to increase
only up to the critical pressure 52.6 pounds. Above this the flow is a
constant. Line-b of Figure 2.2.5-6 is as close as one can come to a universal
flow curve for the orifice which has a constant upstream pressure.

By multiplying by appropriate constants, and calculating new
critical pressures, the flow through a nozzle for any constant upstream
pressure can be found from Figure 2.2.5-6. A family of curves so derived
is aiven in Figure 2.2.5-7. These curves are more convenient to use than
the curve in Figure 2.2.5-6.
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2.2.6 Fiuid Capacity

The fluid capacity, C, of a volume, V,\is defined as the change
in the weight of fluid contained within the volume divided by the associated

pressure change, i.e.,
C = lIdt ‘1)
AP ' ‘

For low frequencies the process will be isothermal and the capacity is given
by

C:._! (2)

T

In general the flow of the fluid to and from the voiume wiil be poiytropic
and obeys the law

PV? = constant (3)

where n is the dimensionless polytropic exponent. When the polytropic law
obtains, the capacity is given by

C = (4)

v
nRY
where n can vary between 1 (the isothermal case) and k (the adiabatic case).

From equation (1) the units of capacity are seen to be 1bf/psi = in2.
Hence, in® are the proper units of fluid capacity. However, the equivalent
1bf/psi is more physically meaningful and shall often be used in place of
in“,

For air at room temperature, the isothermal capacity is found to
be

C=2.9 x 100 v in? (5)

where V is in cubic inches. The polytrop capacity will be less than this
by a factor of n, the maximum deviation being the adiabatic situation where
n=%k= 1l.4. A plot of capacity for air as a function of volume is given
in Figure 2.2.6-1.

In circuit anaiysis and synthesis, the capacitive reactance of the
volume is of more interest than the actual value of the capacity itself.
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Hence; a useful graph is a plot of capacitive reactance as a
function of volume and frequency. Such a piot eliminates the intermediate
step of calculating the capacity. 9ne such plot for the isothermal capacity
covering commoniy used ranges of parvameters is given in Figure Z.2.6-2. A
larger plot; of a wider range of parameters, is given in Figure 2.2.6-3. A
single cycle out of this larger plot is given in Figure 2.2.6-4. To find
the isothermal capacitive reactance of any given voiume outside the range of
Figures 2.2.6-2, the approximate value can be found from Figure 2.2.6-3 and
the more exact value from Figure 2.2.6-4,

In the literature, the fluid capacity of a volnme is often given
as

C=v/p (6)

This differs from the results found above in that the capacity is dependent
not only upon the volume but also upon the pressure to which the volume is
subjected. This discrepancy comes about from using the actual volume flow
rather than a weight fiow for the definition of fluid current. For a given
fluid current, the actual volume flow at any point in a fluid circuit is
dependent upon the pressure at that point.

Starting from the gas law

PV = m RT (7)

and considering the isothermal case, the increment of mass A m which flows
into a volume V under an increment of pressure AP is given by

- Vv
Amn= —Ef AP (8)

Define a fluid capacity as

c' =Av'/AP

where AV' is the actnal volume of gas which flows into a fixed volume, V,
under a pressure change AP. The volume AV' is relatad to the actual mass
flow in by

AV' = Am RT/P (9)
using equation (8) this becomes

AV = % AP (10)

or,

Cl

v/P (11)
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Hence, the introduction of P into the denominator of the capacitance
equation is seen to come from the defining capacity in terms of the unreduced
or actual volume flow rather than the more appropriate weight flow. This
expression for the capacitance; while usable, makes the circuit analysis much
more complex than the more straightforward definition of equation (1). We
shall use the capacitance based upon weight flow in this volume.
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2.2.7 Filuid Inductance

In fluid circuitry, a mass which is accelerating or de-accelerating
will have the action of an inductance. In the pure fluid circuit, the only
moving material will be the fluid itself. Hence, the fluid contained within
the transmission lines and other components of the system will be the only
inductances.

Consider a section of tubing with area A and length L. Let the
tubing be of sufficient size that the resistance is negligibles although
this need not necessarily be so. Whenever the fluid current through this
section of tubing is increased a pressure drop across the tubing will be
required to accelerate the fluid within the transmission lines. For purposes
of analysis, the fluid within the section of line under consideration shall
be assumed to be incompressible and to accelerate as a sinale mass. The
inductance of this mass will be denoted by H

AP = H g% (1)

The fluid current through the element is given by
I= YQ= YA T (2)

Combining (1) and (2), it follows that

AP=Hya U (3)

Applying Newtons' first law to the mass within the tube it is seen that

APA= AL.—-éZ—.—g-% (4)

From equation (3) and equation (4) it follows that

H = L/Ag (5)

Hence, it is seen that the inductance is a function of the dimensions of the
fluid component under consideratign only. Ai inﬂicated in aquation (5) the
units of inductance are psi - secz/lb. = sec?/in“.

Consider now the inductance of a length of round tubing. The
inductance in terms of the diameter D is given by

4L
H_q—gﬁz (6)
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or

where f is the frequency. Since 8/g = 0.0206 secz/inch, this becomes

Xy = 0206 f1/D? (psi-sec/1b) (8)

Plots of inductive reactance for one inch lengths of tubes of various
diameters are given in Figure 2.2.7-1.

It is interesting to compare the inductive rsactance of tubing to
the capacitive reactance of the same section of tubing considersd to ke a
capacitor. Take air as the fluid, and consider a 1 inch length of tube with
0.1 inch diameter. From Figure 2.2.7-1, the inductive reactance of this
section of tubing at 100 cycles/sec is 206 fliid ohms. The voiume of thais
same piece of tubing is 0.008 cubic inches. From Figure 2.2.6-7 the
capacitive reactance of this volume at 100 cycles/sec is 68,000 fluid ohms.
Hence, it is seen that for even quite small sections of tubing the capacitive
effects far outweigh the inductive effects.

Now consider a 1 inch length of tubing with a 0,010 inch diameter.
The inductive reactance at 10 cycles is seen to be 2,060 fluid ohms. On the
other hand it is seen from Figure 2.2.2-2 that the laminar fluid resistance
of this same tubing is 240,000 fluid ohms.

In general it is seen that in an air circuit the inductive etfects
of the fluid can be neglected.
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3. FLUID INSTRUMENTATION

As in any new technoloaical field, so in the field of fluid amplification,
there is a necessary contemporary development of instrumentation to meet the
needs of the new technology. Most of the previous work in fluid dynamics has
been concerned with steady-state flow. However, digital and proportional fluid
circuitry require the measurements of time-dependent flow. Prior to the
development of this new field of fluid amplification, the study of time-
dependent flow was performed (for the most part) with fairly large size devices.
The advent of fluid amplifiers and the desire to make small computer and control
system circuitry created the need for small and time-dependent instrumentation.
This portion of the report details some of the fluid instrumentation problems
and current instrumentation developments. The instrumentation is covered in two
parts: steady-state measurements and time-dependent measurements.




3.1 Steady-State Measurements

Steady-state or quasi steady-state fluid flow does not require instrumentation

having any particularly frequency response. The bulk of the fluid dynamics
literature (possibly 90%) is concerned with steady or slowly varying flow. This
section will treat briefly the instrumentation available and used for such
measurements.

3.1s1 Flow Measurements

Flow meters can be divided into two basic sub-divisions: meters to
measure velocity of flow and meters to measure quantity of flow. A further
breakdown into no-moving-parts, deformable-parts, and moving-part flow meters

is useful. A list of the various types of flow meters divided into the above
heads follow:

VEIOCITY METERS (Rate of flow)

No Moving Parts

Meters utilizing an in-line restriction and providing a
pressure difference across the restriction for the flow
measurement:

Venturi

Elbow (or centrifugal type)
Orifice

Flow Nozzle

Linear Resistance

Capillaries
Porous Plug

Critical Flow Nozzles and Orifices
Thermal Types

Hot Wire Anemometers
Hot Film Anemometers
Thermistor Type

Heat Transfer Type

Deformable Part Flow Meters

Force on body with known drag coefficient

Rotates spring loaded arm
Bends a flexible supporting arm

Moving Part Flow Meters

Cup Anemometer

Vane Anemometer

Rotor Type Flowmeters
Rotameters

-




QUANTITY METERS (Volumetric or Mass Flow)

No Moving Parts

Electromagnetic Flowmeter
Radioactive Tracers

Moving Parts

Wobble Plate or Nutating Disk
Rotary Type

Most of the meters listed above are steady-state type flow meters.
The exceptions are the thermal types and these will be discussed later.

The work performed at Sperry Utah Company has in general made use
of the "Vol-O-Flow" linear restriction type of flow meter (see Figure 3.1.1-1),
the quantity or totalizing flowmeter which is a modified gas meter such as
used to measure gas consumption in the home (see Figure 3.1.1-2), locally

fabricated venturi and orifice types of flowmeters, and the hot-wire anemometer
(Figure 3.1.1-3). (See discussion in Section 3.2.1.)
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Figure 3.1.1-1

3,



Figure 3- lo 1-2

Totalizing Flowmeter
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3.1.2 Pressure Measurements

Instruments to measure pressure can be subdivided into the no-moving-
part, deformable-parts, and moving-parts types of devices. A list of most types
of pressure measuring devices is presented under the above headings:

No Moving Parts

Pilot Tubes
Kiel Probes
Claw Probes
Wedge Probes
Manometers

U-Tube
Well Type

Deformable Parts

Diaphragm Types

Capacitive Pickoffs
Strain Gage Pickoff
Variable Reluctance

Crystal Transducers

Quartz
Lead Zirconate Titanate

Moving Parts

Gages (generally with moving part linkages)

Bourdon Tube
Bellows
Diaphragm

With the exception of the diaphragm type devices using some form of
electrical pick-off and the Crystal-type pressure transducers all of the other

pressure measuring devices are usable only for steady-state pressure measurements
or for slowly varying flows.

At Sperry Utah Company, we have used the Pitot tubes, U-tube mercury
and water manometers, piezo-electric pressure transducers, bourdon and bellows-
type pressure gages, and a variable reluctance pressure gage.

The piezo-electric transducers and the variable reluctance pressure
gage will be discussed under the Section 3.2.2.

For steady state flow, the pressure gage is the easiest piece of
equipment to use., The only disadvantage to the pressure gage is the need for
occasional calibration checks. Manometers are easy to use, work over a wide
pressure range by using either water, oil, or mercury and are essentially always
in calibration. However, the reading of manometers and conversion of the readings
to desired units, the replacement of the water or mercury after an unexpected
Pressure change, and the bulkiness of a tall manometer are disadvantages which
Subtrace from their utility in the laboratory.
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3.1.3 Flow Visualization Techniques

Three types of flow visualization techniques are of importance to the
fluid system designer. The first of these is the use of colored fluids (liquids)
and can be used both for steady-state flow visualization and slowly varying flows.
For rapidly varying flows, difficulties arise due to turbulent mixing of the
fluid.

Wind tunnel technology has long made use of plumes of smoke to show
the steady-state or slowly varying flow patterns in the vicinity of an obstacle
or model. With proper scaling, certain elements of fluid circuitry can be
observed by an adaptation of this technique of observing the flow patterns by
the use of smoke.

The most useful flow visualization tool used at Sperry Utah Company
consists of a modified Preston Oil Smoke Generator toaether with a fume hood
and transparent models of fluid devices. Figure 3.1.3-1 shows the smoke generator
being used with some models. Figure 3.1.3-2 depicts a fluid vortex formed in a
right circular cylinder. This flow visualization equipment was used to observe
the formation of a fluid vortex and was found to be a great aid in solving the
fluid equations necessary to analytically handle the vortex phenomena.
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3.2 Time Dependent Measurements

For fluid measurements which vary with time, there are a limited number
of devices which can provide adequate information. Any flow or pressure
measuring device can, of course, provide information on slowly varying changes.
In fact some gages will respond to changes up to a few cycles per second. For
the purposes of fluid-control engineering, it is necessary to have instrumentation
which has a frequency response of at least an order of magnitude higher than the
signals being measured. Some such flow and pressure measuring instruments are
discussed in this section.

3.2.1 Flow Measurements

The basic instrument for measuring rapidly fluctuating flows is the
hot wire anemometer. Basically, this instrument utilizes the change in current
through a resistance wire caused by a change in temperature. In operation a
fine wire (such as Platinum or Tungsten Wire of less than 0.001" in diameter)
or a thin film is heated by passing an electric current throuch the wire or film.
Any change in the flow of a fluid (usvally a gas) past a heated wire, or film,
will result in a change in the temperature of the wire, or film. The faster the
fluid flows, the greater the rate of heat removal.

As heat is removed from the wire, or film, electrical circuitry
connected to the hot wire, or film, probe senses the change in resistance of
the wire, or film. Two types of circuitry are utilized. One type of circuitry
is designed to keep the temperature of the wire constant (Constant Temperature
Hot Wire Anemometer). A second type of circuitry is designed to maintain the
current through the wire at a constant value (Constant Current Hot Wire Anemometer).

At Sperry Utah Company, we have chosen to use the constant current
type of hot wire anemometer because it has, in general, a higher frequency
response than the constant temperature type device. Figure 3.1.1-3 depicts a
Constant Temperature Anemometer made by DISA of Denmark.

The probes that are available with hot wire anemometers are not readily
suited for making fluid measurements in small diameter ducts and pipes. SUCO
has therefore designed special probes which can be placed directly in series
with the line to be measured. Figure 3.2.1-1 depicts these special probes.
Figure 3.2.1-la also shows the ordinary miniature probe provided with the
equipment. This probe is useful making flow measurements (or traverses) across
relatively large devices or ducts. The delicate nature of the probe, because
of the very fine wire welded across the probe tip, prevents it from being readily
inserted into a tube or pipe. Figure 3.2.1-1b depicts the same type of probe
in a different sort of mounting. Here the probe support is adapted for easy
mounting of the hot wire directly in line with a circular duct or pipe.
Figure 3.2.1-1c depicts a probe body which combines both the hot wire anemometer
probe and the crystal pressure transducer. The insertion of this probe in the
line permits the measurement of both the flow and the pressure fluctuations at
the same time. For example of hot-wire data see Figure 3.2.1-2.
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Figure 3.2.1-2 Acoustic effects in a pulse fed pipe.

LEFT: INPUT WAVEFORM WHEN SUPPLYING FLUID PULSES TO
A FOUR FOOT PIPE (% in. I.D.)

RIGHT: INPUT WAVEFORM WHEN END OF FOUR FOOT PIPE
HAS PROPER ACOUSTIC TERMINATION.

NOTE: UPPER TRACES FROM OPTICAL PICK-OFF; TIME
10 msec/cm, DISA HOT WIRE ANEMOMETER DATA.
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Some difficulties should be noted in the use of a hot wire anemometer.
The probes with their associated circuitry provide a fourth power curve as a
function of flow (see Figure 3.2.1-3). Some manufacturers provide linearizing
circuitry.

NDue to the non-linear nature of the output, pulse shapes are
considerably distorted. The non-linearity is such that the probe is most
sensitive to small flows and less sensitive to large flow rates. If one is
using the anemometer to observe fluctuations in flow superimposed on a given
amount of flow, then the non-linearities are not areatly apparent. Under such
conditions, however, another of the difficulties with some anemometer equipment
becomes apparent.

Some of the anemometer circuitry uses a cathode follower circuit to
couple to external indicating equipment (such as to an oscilloscope). A
fluctuating signal superimposed on a steady-state flow represents a given voltage
output plus a fluctuating voltage. To observe the details of the fluctuations
on an oscilloscope, it is necessary to isolate the oscilloscope from ground and
then provide a steady bias voltage between scope and ground to "float" the scope
above the gronnd potential. When using two hot wire anemometers, this procedure
can become very troublesome because of the difference in voltage outputs from
two sets of anemometer circuitry and probes.

At least one manufacturer (Thermo-Systems, Inc.) provide for direct
"biasing" of the output voltage on the control panel of the anemometer. This
accomodation is of great advantage. The equipment made by DISA does have some
filter circuits, which will remove the d.c. voltage from the output and leave
just the fluctuations. There are some difficulties involved in using this
circuitry for some of the flow measuring applications peculiar to pure fluid
control systems.

The calibration of the ordinary probe (Figure 3.2.1-la) requires a low
turbulence wind tunnel such as is shown in Figure 3.2.1-4. However, the types
of devices as shown in Figures 3.2.1-1b and 3.2.1-1lc can easily be calibrated
by using a length of tubing of the appropriate size and a totalizing flowmeter.
If the length of the tubing preceding the probe is many times the diameter of
the tubing, then there will be fully established "pipe flow" up to the probe
and good results can be made in calibating the probes. The tubing after the
probe need only be connected to the totalizing flowmeter (or to a rotameter
of the correct size) and the flow determined. The totalizing flowmeter is
desirable due to its low cost and high accuracy.

3.1k
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Figure 3.2.1-3 Typical calibration curves for anemometer probe.
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3.2.2 Pressure Measurements

Time dependent pressure measurements at SUCO are made by one of two
devices, the Sensonics "Variducer" and a locally fabricated variable reluctance
pressure transducer.

Crystal Transducers. The "Variducer" made by Sensonics, Inc., of
Kensington, Maryland utilizes a small lead zirconate titanate crystal as the
sensing element. The crystal is pre-stressed for improved performance. The
Variducer used at SUCO is the MC25-1 which has a pressure range from 0 to 100 psig
with the useful minimum pressure being about 0.001 psig (although this minimum
value depends on the circuitry to which the crystal is attached). The frequency
response of the device is listed as 2 cps to 500 kcps,

The crystal type transducers (either the lead zirconate titanate or
the quartz crystal) have two problems in use. The first problem is that the
transducer is responsive only to changes in pressure and not to the mean value
of the pressure. This may be compared to an electronic device which indicates
only the a.c. component of the signal and not the de.c. component. This problem
results in some difficulty in calibrating the transducer and associated circuitry.
It is only fair to say that the manufacturers of these transducers do sell
circuitry to resolve both of the above difficulties. Typical prices of the
transducers are $200 to $250 each and the associated transducer amplifiers range
from $300 and up.

Another difficulty in use of the crystal pressure transducer is in its
very high frequency range. While this may appear to be an immediate advantage
some consideration will show that high frequency response can be a limitation
in pure fluid control circuitry work. In almost all fluid circuitry where there
are active components there is some type of a free jet, submerged free jet,
jet-edge combination, or impinging jets. 1In all of these cases a considerable
amount of high frequency "noise" is produced. To the ear, this noise is a
hissing sound. To the crystal transducer, this noise is a highly variable, high-
frequency background, somewhat comparable to the "white noise," or thermal-
noise, in electron circuitry. Very often, the amplitude of this hissing noise
is of the same order of magnitude as the sional when measurements are made close
to the active element. However, almost none of the active devices which are
coupled downstream are sensitive to this high frequency noise. In many cases
the volumes of the interconnecting passages quickly damp out of the high frequency
perturbations. Therefore, when measuring the output of an active component, the
signal is often masked by the high frequency variations of this "noise." When
using a crystal transducer, both the signal and the "noise™ are present in the
display output, unless the circuitry is modified to filter out the high frequency
components.

Variable Reluctance Pressure Transducer. If it is desired to produce
a linear pressure transducer which has an output which is a function of both
steady-state and fluctuating pressures, then conceptually a small diaphragm
pressure transducer will suffice. The details of some of the physical design
problems are presented in Reference 9.

At SUCO, we have adapted the information contained in this reference
and have fabricated a transducer which has proved most useful. Figure 3.2.1-1d
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shows this variable reluctance pressure transducer. The solution to the response
problem is to use a small thin pre-stressed diaphragm. Radially stressing the
diaphragm acts to raise the natural frequency of the diaphragm to a level above
those frequencies which are of primary interest.

Some of the biggest problems in the construction of this variable
reluctance pressure transducer are found in the associated electronic circuitry.
The pick-up coils must be supplied with alternating current excitation of a
frequency well above the frequency which the transducer is expected to measure.
Balancing means need to be provided to balance out the bridbe circuitry.
Considerable amplification of the pick-off signal must be provided to obtain a
useful output level. Near zero pressure, the transducer is also near zero output
voltage so that any noise is amplified by the associated circuitry. Unless
special care is used in the design and isolation of the circuitry, very low level
signals may be masked by electronic noise.

In operation, the transducer functions in the following manner: The
diaphragm is part of a magnetic circuit formed by the body of the transducer
and excited by the two pick-off coils. With no pressure differential across the
diaphraam, the electrical output of the transducer is zeroed. When pressure on
one side of the transducer is larger than the opposite side, then the diaphragm
will bend toward the lower pressure. The change is position of the diaphragm
represents changes in the magnetic circuit of the transducer. Such a change in
the magnetic circuit unbalances the pick-off coil portion of the bridge circuit
with a resultant change in the output voltage. The output voltage from the
bridge may vary from zero to fifty millivolts. '

The voltage level from the bridge is too low to be rectified with
diode circuitry so the output voltage is fed to an amplifier. The output of the
electronic amplifier is supplied to a diode, bridge-rectifying circuit, and the
resulting d.c. voltage is used to drive an output display device (oscilloscope
or recorder). The d.c. output has a fairly qood linear relationship with the
input pressure to the transducer. Therefore, when the transducer is used with
fluctuating signals, the output waveform is a fairly accurate representation of
the pressure waveform.

The transducers as made and used at SUCO have been desianed to provide
a frequency response in the range of two to four kecs. This allows for the
measurement of the signal frequencies without being responsive to the "hissing"
high frequency noise. This results in a quite clean signal when viewed by the
use of an oscilloscope.

Figure 3.2.2-1 shows a photoaraph of a typical input and output signal
and measurement made with an "impact modulator.”
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Figure 3.2.2-1 Impact Modulator Input Output Signals
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3.2,3 Flow Visualization Techniques

Flow visualization techniques suitable for the study of time-dependent
fluid phenomena exist. The most useful device for this approach is the oil smoke
generator (see Figures 3,1.3-1 and 3.2.3-1) used together with either visual or
photographic techniques. The problems in using smoke visualization techniques
can be listed as follows:

a. Inhalation of oil smoke can cause respiratory ailments, therefore
it is necessary to utilize a fume hood or at least a charcoal hood with
ventilating fan to remove the smoke,

b. The 0il smoke tends to condense in tubes and ducts. Condensation
is particularly troublesome with small pipes and ducts. Therefore, it is sometimes
necessary to scale up the experiment (using proper scaling laws) in order to
study the flow patterns.

c. Even the best smoke is sometimes difficult to photograph. It
takes some experience with lighting, smoke density control, and careful machining
of transparent test devices to obtain the desired results.

d. Smoke visualization can best be used only up to a certain level
of flow velocities. High speed air moving into a geometry where turbulence is
no longer inhibited allows for rapid dispersal of the smoke. With care, however,
flows as 250 feet per minute can be studied by smoke visualization.

Even with the above problems, the use of smoke visualization is one
of the best methods of determining the nature of the fluid flow variations and
leads to considerable improvement in device design.

Experimental work performed by Messrs. Goldschmied and Fox using a high
speed motion picture camera and smoke for flow visualization made significant
early contributions to the understanding of the nature of the flow in wide-
angled rectangular diffusers and in the switching mechanisms of the wall-
attachment amplifier. Photographs were taken of edgetone and switching phenomena
at the rate of 8,000 frames per second. The slow motion projection of the movies
which resulted were most helpful in understanding some of the basic fluid dynamics
problems associated with the devices studied. Suffice to say that such efforts
with flow visualization are credited with saving many manhours in work in cut-and-
try empirical methods.
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PROPORTIONAL ACTIVE DEVICES

4.1 Fluid Dynamics Fundamentals

The basic fluid phenomena underlying the proportional fluid amplifiers
discussed in Section 4.2 are as followss

a) Impacting and deflecting jets, axisymmetric and reciangular, subsonic.

b) Wall-jet separation from curved surfaces, rectangular, subsonic.

c) Spiral flow, rectangular, subsonic.

In all cases, the influence of viscosity is important, as measured by the
Reynolds Number for the steady-state flow and by the Stokes Number for the
dynamic flow.
L]
In some cases, particularly for the impacting and deflecting jets, there
will be fluid compressibility effects as measured by the Mach Numper of the jet.

Both flow and pressure must be considered for the input and oﬁtput of fluid
amplifiers, because even ram-piston loads require an appreciable flow rate in the
dynamic case.

In general, for proportional amplifiers it is assumed that at any instant

the flow corresponds to the steady-state flow under similar conditions, i.e.,
the dynamic flow is assumed to be quasi-steady.

h-1



4.2 Typical Active Devices
4.2.1 Introduction

It is the purpose of this section to explore some of the design
problems in the development and use of pure fluid proportional amplifiers.
Four classes of proportional devices will be considered: the impact modulator,
the beam deflection amplifier, the vortex amplifier, and the elbow amplifier.
The operation of each type will be described. No attempt is made to discuss
design parameters. Plots of phase and gain for a variety of proportional
active devices are given in Figure 4.2.1-l.
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4.2.2 Transverse Impact Modulator

The transverse impact modulator is a pure fluid amplifier which
utilizes two impacting fluid jets. Figure 4.2.2-1 shows the direct impact of
two fluid jets. The position of the line of impact depends upon the relative
momentum in the two fluid streams. The momentum, in turn, depends upon the
pressure in the two fluid reservoirs. Consequently, changes in one of the
reservoir pressures changes the momentum of one of the jets. This results
in a shift in the radial-jet position.

The pressure within the radial jet can be sampled with a pitot
tube. For a fixed pitot tube location any change in the radial jet position
is reflected in the pressure sensed by the pitot tube. Such changes can be
considered as an output signal. In this case, the input signal would be the
pressure change in the reservoir which caused the shift in the impact point
of the two jets.

The flow available from a pitot tube pickup is small; and where a
flow, as well as a pressure, output is required an annular collection chamber
can be used. Such an arrangement is shown in Figure 4.2.2-2. A control
orifice is also shown in the same Figure. The elements of Figure 4.2,2-2
constitute what is called the transverse impact modulator.

When pressure is applied to the control orifice of an impact
modulator, the contrel jet interacts with the jet emerging from the left
hand or emitter orifice (Figure 4.2.2-2). The interaction changes the momentum
of this jet, and the impact plane of the two jets shifts to the left. The
result is a reduction in the output-chamber pressure and flow. This effect
constitutes the basic mechanism of the transverse impact modulator.

The sensitivity of the impact modulator is quite high, and pressure
gains of 10 to 20 are readily obtainable. Input signals can be applied to
either the control orifice or one of the main orifices. The gain is negative
if the signal is applied to the control orifice.

A labeled, cross-sectional sketch of a transverse impact modulator
and the symbol used to represent it is shown in Figure 4.3.2-2. Also shown
in this figure is the terminology which shall be used. In general, the sub-
scripts 1 and 2 refer to the emitter and collector jets respectively. The
subscript "i" refers to the input or signal orifice while a subscript "o"
relates to the output or collector chamber. Upper case letters refer to
steady state values of flow and pressure, while lower case letters refer to
incremental or small signal values.

Lol
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Figure 4.2.2-2 Transverse impact modulator.
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4.2.3 Beam Deflection Amplifier

Historically, the beam deflection amplifier was the first of the
pure fluid proportional amplifiers (Ref. 11, 12). Figure 4.2.3-1 depicts a
typical stream interaction amplifier. Figure 4.2.3-2 shows typical device
characteristics. This device makes use of the principle of momentum exchange
between orthogonal fluid jets to provide proportional amplification.

Under conditions where no control flow is present, the power input
stream flows out both the right and left output ducts in equal amounts. In
the pressence of a differential flow across the two control ducts, there is
a momentum exchange between the control flows and the power jet. The control
flow with the greatest energy will deflect the power jet away from itself.

A small amount of power jet deflection causes significant changes in differ-
ential flow from the two output ducts.

It should be noted that the interaction region in this proportional
amplifier is designed in such a manner that the power jet does not flow near
an adjacent wall in the vicinity of the power jet outlet. The presence of a
wall can cause an adjacent jet to bend to and flow along such wall (Coanda
effect). This effect is an important design consideration. Another necessary
design feature is the providing of vents on each side of the power jet in
the interaction region so that there is no differential pressure across the
jet. Such a differential pressure would bend the jet even in the absence of
control flows.

The "splitter" or wedge which divides the power stream into equal
outputs constitutes a source of noise. In fact, the jet-edge system which
exists in many variations of pure fluid devices constitutes a noise source
or a source of instability. This jet-edge combination does not lend itself
to easy analysis and therefore most of the design work has been done by
empirical methods.

The biggest difficulty involved in the cascading of several beam
deflection amplifiers is the lack of isolation between stages. The results
of cascading is some considerable loss in gain per stage plus an upstream
sensitivity to downstream loading. It has been reported that perturbations
in the downstream portion of a control system have been reflected all the way
upstream to the rate sensor.

Another difficulty which this fluid device shares with most other
fluid devices is a signal to noise ratio which is much lower than those
usually encountered in electronic equipment components. Currently there is
no adequate published information on signal to noise ratios; nor, for that
matter, is there a good agreement on what frequency spectrum should be considered
in the noise measurements.

Figure 4.2.1-1 shows a Bode plot of the operational characteristics
of both an unloaded and a loaded beam deflection amplifier. (Ref 12) Note
that when the amplifier is loaded there is a marked change in the operational
characteristics of the device. This charcteristic is probably the most
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Figure 4.2.3-1 Beam deflection amplifier.
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Figure 4.2.3-2 Characteristics of beam deflection amplifier.



important one to consider when designing circuits using these amplifiers.
It must be pointed out that it is by no means a simple or trivial task to
design proportional circuitry using beam deflection amplifiers.
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4.2.4 Vortex Amplifier

A pure fluid amplifier, which operates in a sense as a variable
restrictor, can be made by utilizing vortex flow in a right circular cylindrical
chamber. As shown in Figure 4.2.4-1, the “"power" or input flow is introduced
into the chamber from the outer wall in such a manner that in the absence of
control flow the power stream flows radially to the center of the chamber and
out the output duct. Control flow is introduced in the manner depicted so
that the momentum exchange between power and control flows will produce a
tangential component to the power stream. As the interacting streams converge
on the centrally located output, angular momentum is conserved with the
resulting effect that the tangential component of velocity is greatly amplified
and a vortex flow is established in the circular chamber.

Two effects are present in this device, both of which have potential
for pure fluid amplification. The tangential velocity of the combined power
and control streams is greatly amplified at the output (to a first approxi-
mation by a factor of the larger diameter of the chamber divided by the diameter
of the output duct). Secondly, the creation of the vortex flow serves as a
limiting effect or an established back pressure on the power flow. The first
effect has been exploited in making proportional fluid rate sensors and the
second effect is making a variable restrictor. The second effect has also
been utilized in making a fluid diode.

Two major difficulties are found in utilizing the vortex amplifier
for proportional amplification. The first difficulty is that the circuitry
must be built.using the device as a variable restrictor. The second difficulty
is that the basic, restrictor device requires a large amount of control flow
to approach a complete throttling of the power stream. Figure 4,2.4-2 shows
curves for typical operation of the vortex amplifier.

One minor design difficulty is related to the relative low, frequency
response of the device when used to modulate the upstream power stream.
Another design restriction is related to the physical size of the vortex
amplifier. These devices do not lend themselves to miniaturization, or to low
pressure and low flow requirements, as easily as do other pure fluid devices.

One of the distinct advantages of the vortex amplifier is its high
amplification factor. Most other pure fluid amplifiers have gains of the order
of ten. Vortex amplifiers have potential of an order of magnitude better gain
performance. Another advantage of the vortex amplifier is that it performs
a3 distinct and unusual (to electronics) function -- that of being a variable
restrictor.

In Appendix I of Volume I of this report there is contained a
summary of the work done at Sperry Utah Company on the analytical investigation
of the vortex phenomena. Figure 3.1.3-2 shows, visually, how complex the
motion of a confined vortex can be. Such complexity has advantages for it
allows for the discovery and exploitation of new fluid dynamics effects. At
Sperry Utah some very interesting vortex effects were observed and noted during
earlier fluid investigation. For example, a circular jet directed through
a vortex is focused by the action of the vortex. Again, if the vortex is
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formed in a spherical chamber, there are very interesting modes of oscillation
which are not dependent on external feedback.

The greatest gain of the vortex amplifier is in the amplification
of the tangential velocity of the spiral flow. If it were practical to
utilize the full gain of this tangential velocity component of the flow in
cascaded circuitry, extremely high gain circuitry would result. This pro-
cedure remains as a challenge to fluid experimenters.
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4,2.5 Elbow Amplifier

The pure fluid proportional amplifier which apparently has the
highest flow gain is the double leg elbow amplifier (DLEA) developed by
Giannini Controls Corporation. Two basic fluid flow phenomena are used in
this device: flow separation in a curved channel, and momentum exchange
(or stream interaction) between two flows. Figure 4.2.5-1 depicts the phe-
nomenon of flow separation from a curved surface in a rectangular elbow.

The point of flow separation can be changed by the introduction of a counter-
flow as depicted in the drawing (Figure 4.2.5-1).

The velocity profile of the supply flow in the straight section of
the elbow is symmetric about the center line of the elbow. However, after
undergoing sufficient curvature, the velocity profile is skewed so that the
higher flow velocities are near the outside of the curved section. With
appropriate values of flow and curvature the flow tends to separate from the
inner wall of the elbow.

With the addition of a control flow, the point of separation moves
upstream. The result is a significant change in the flow momentum per unit
area (momentum flux) of the flow downstream from the elbow, as depicted in the
illustration by the dotted lines. By utilizing a downstream means of recap-
turing the flow, the change in flow per unit area results in a considerable
flow change in the output duct.

The double leg elbow amplifier, which utilizes a further addition
to the amplifier described above, is depicted in Figure 4.2.5-2. Coupled
with the basic elbow flow separation is an additional "passive" leg which
provides a second stream to interact with the stream in the "active" leg.

As shown in Figure 4.2.5-2, the DLEA has two output ducts. With no centrol
flow present, the magnitude of the momentum flux is low near the outlet of the
passive leg because of the larger area that the flow occupies. The active

leg flow is thus easily deflected to the left by the passive leg flow
(utilizing the momentum exchange of stream interaction).

With control flow present, the magnitude of the momentum flux of
the active leg flow is increased because of the smaller area that the flow
occupies. The passive flow is now unable to "bend" the active stream as much
and flow exits in the right output. A proportional control signal at the
control duct will result in a similar but amplified signal at the right
output duct. The remainder of the vents, and the splitter vane, are added to
improve the performance of the device. For typical characteristics of the
DLEA see Figure 4.2.5-3 and also Reference 13.

The disadvantages of the DLEA are the low pressure gains, complexity
of the basic element, and somewhat slow response time (greater than 100° phase
shift at 25 cps). See the summary of operation of proportional devices,

Figure 4.2.1-1 (data from References 11, 12, 13, 14). The low pressure gain
of the device would suggest that thedevice would be difficult to interconnect
due to a sensitivity to downstream loading. In fact, one might generalize
and suggest that the better the pressure gain of a device, the more easily it
can be interconnected in fluid circuitry.

The advantage of the DLEA are its excellent flow gain characteristics.
This device is the best of the proportional devices in terms of flow gain.
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Figure 4.2.5-2 Double leg elbow amplifier.
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4.3 Impact Modulators
4.3.1 Introduction

Given any new active fluid device there are basic questions which
require answers prior to utilizing it in circuits or systems, Of first concern
is the performance of a single device under steady state conditions. Logically
the next requirement is information concerning the device characteristics under
dynamic conditions. If the element proves promising as a single component,
further information is needed on the problems of interconnecting two or more
devices. Both steady state and dynamic performance data will be needed.
Information concerning such characteristics is input and output impedances,
degree of isolation of stages, gain under load, and stability criteria will be
useful,

It is the purpose of this section to provide the type of design

information for typical impact modulators which will enable the control system
designer to utilize them in fluid control circuits.
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4.3.2 Impact Modulator Operation and Nomenclature

Fiqure 4.3.2-1 is a cross section of an impact modulator showing the
basic features and typical dimensions. In Fignre 4.3.2-2 is a sketch which is
moré nearly what the actual cross section might actually be in a production
model impact modulator., Alsc shown in Figure 4.3.2-2 is the schematic symbol
used for the transverse impact modulator and the letter symbols which are used
for pressures and flows.

In the impact modulator two colinear opposing jets (Pl and P2) are
connected to a fluid power source such that the impacting balance point is
located within a collector chamber. An orthogonal control jet is located so as
to affect the power jet opposite the collector chamber. Any flow through
the control orifice will cause some weakening of the power jet Py with a resultant
shift in the balance point between the two power jets. This shift will affect
the output pressure Pj. Thus the output is a direct function of the control
jet signal Pji.

The usual method for connecting the two power jets to the supply
pressure shown in Fiqure 4,3.,2-3. If the resistor between the two power jets,
Rp, is linear over the range of variations of the supply pressure, then the impact
point of the two jets, i.e. the balance point, will remain in the same relative
location with respect to the collector chamber. This means that with the proper
value for the resistor the designer need only to determine the required value
of one supply pressure.

Inasmuch as any signal fed to the control jet tends to move the impact
area out of the collector chamber, the output of the impact modulator is the
necative of the input signale In other words, the impact modulator has a
negative gain,

4-20




*J03eTNpOW 10edW] UB J0J suolsusw]p [eoldAl, 1-Z'¢'% aIn31d

,260° =
,0L0°" =
.810" =
.910" =
600" =

g @ O O W

421



/

OUTPUT, OR

/

COLLECTOR CHAMBER

N

mn

\

COLLECTOR ORIFICE

P,

WA

/
EMITTER
ORIFICE ~
I:>I
7/
/
P

\'CONTROL OR INPUT ORIFICE

U

INPUT o—

Pi STEADY
I. STATE
]

P; SMALL

i SIGNAL
]

— QUTPUT

Po

i
}

STEADY

[ STATE

Po | smaLL

SIGNAL
lo
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40,3.3 Steady-State Behavior

A family of typical pressure curves for an impact modulator are shown
in Figure 4.3.3-1. These are curves of output pressure, Py, plotted against
emitter orifice pressure, Py, with the collector orifice pressure, Pp, fixed,
with no input signal. These curves depict the maximum ontput pressure range
that can be achieved with any particular power jet supply pressures. The
collector jet supply pressure, Py, can be compared to the grid bias voitage of
a vacuum tube, in that it biases the output flow to positive, zero, or negative
values with no input signal. By this method the modulator output can be biased
into the desired range.

Tests have shown that the steady state pressure gains ( P,/ P;) of
various impact modulators vary from 20 to 50. However, due to the additional
constraints added in interconnectina impact modulaters in direct coupled circuitry,
the pressure gain per stage drops to between 15 and 25.

Figure 4.3.3-2 is a tracing of an X-Y recorder plot of a two stage
amplifier circuit with no feedback. As can be calculated by the slope of the
curve, the gain is approximately 300 for two stages or an average gain of 17
per stage. Several stages can be cascaded in this manner so that four and five
stage amplifiers can be used as the basic, high-gain, open-lcop amplifiers for
fluid "operational amplifiers.”

One problem encountered in the steady-state circuit design is matching
the impedance of the input transducer or circuit to the input impedance of the
impact modulator. The input impedance of the impact modulator is just the
impedance of the control or input orifice.

In many circuits, it is desirable to have a high input impedance,
The pressure-flow equation for an orifice is

IizB\[;: (1)

where I; and Py are the input current and input pressure. The parameter B
is a function of the orifice diameter and flow coefficient. The incremental
input impedance (R;) of the device becomes:

po-28 o 2VE (2)

B D11 B

and is seen to increase with increasing input pressure.

The conclusion is obvious: to increase the input impedance, increase
the applied pressure. However, a very high pressure applied to the control
orifice will put the impact modulator beyond its operating range. Typically,
0.25 psi is the maximum possible input pressure for an impact modulator. Hence,
there is a definite 1limit to the input impedance which can be obtained with a
given device used in the normal fashion.
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Figure 4.3.3-2 Input-output curve for a 2-stage amplifier.




Relatively large pressures can be applied to the power jets, and it
has been found to be possible to obtain quite high input impedances by connecting
the input or signal line to one of the pover jets rather than the control jet.
Either power jet can be used as the input orifice. The pressure at the other
power jet is set so that the output pressure is in the desired range. A schematic
showing the connections when the emitter jet is used as the input orifice is
shown in Figure 4.3.3-3a.

A differential amplifier can be made by using both the emitter and the
collector power jets as inputs as shown in Figure 4.3.3-3b. The output pressure
in this arrangement is a linear function of the difference of the two inputs.

An equivalent circuit for the impact modulator is needed for circuit
desian and analysis. The values of the parameters in the equivalent circuit will
depend greatly upon the power jet pressures, Py and Pop,

In arriving at an equivalent circuit, first note from Figure 4.3.2-2
that the control jet operates upon the fluid stream which issues from the emitter
jet. This modulates the emitter jet, which in turn flows towards and interacts
with the collection chamber and the collector jet. The important point to note
is that there is no feedback from the collection chamber to the control jeto
The input to the impact modulator can then be represented by a simple resistor
equal to the resistance of the control jet orifice.

The static equivalent circuit of the output section of the impact
modulator can be obtained through the nse of well known circuit theory. The
output, or collector, chamber can be considered to be a generator with a given
voltage and a given internal, perhaps nonlinear, resistance. These parameters
can be determined by connecting the various orifices to fixed pressures and
measuring the output flow as a function of the pressure in the collection chamber.

The ontput-pressure versus output-flow measurement is obtajined by
connecting a variable resistor to the output such that the output flow can be
varied from zero to the maximum obtainable. A series of plots of output fiow
versus output pressure are then made for a variety of control jet settings.

A plot of output-flow versus output-pressure for a typical impact
modulator is shown in Figure 4.3.3-4. The signal pressure P; varies from O
to 0.25 psi. 1In the higher input pressure ranges the curves are seen to be
linear. The collector chamber hence acts as a linear resistor in this area,
and the internal resistance in the equivalent circuit will be a linear resistor.
For the higher signal pressures the internal resistance, R,» is found from the
curves shown in Figure 4.3.3-4 to be about 10° psi-sec/1b,

For impact modulators, a wide range of power jet supply pressures are
possible. This complexity increases the design problem; but in return, it allows
a selection of various supply pressures Py and Pp for a given output pressure.
This is shown in Figure 4,3.3-5 which shows output flow-pressure curves for a
typical device. Note that the three curves, each representing different supply
pressures, all pass through a common operating point; Py = 2.2 psi and Iy =
2 x 10-5 1bs/sec.
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INPUT f \\ REFERENCE
\ I/J —O PRESSURE

OUTPUT

o. EMITTER JET USED AS INPUT ORIFICE

INPUT f '\\ _ INPUT
NO. | \ I// NO. 2

l

OUTPUT

b. DIFFERENTIAL CIRCUIT

Figure 4.3.3-3 Use of power jets as inputs.
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Note that the three curves all pass throuch the operating point with
different slopes. This means that the incremental,or small signal, output
impedance can be requlated by proper choice of supply pressures. This is also
true of the transconductance and amplification factor of the device.

Returning to Figure 4.3.3-4, a plot of output pressure versus input
pressure for zero output flow can be made from the intercept of the curve with
the output pressure coordinate. This is shown in Figure 4.3.3-6 and is seen
to have a quite linear region. In this linear region, the gain

AP3 I, =0 (1)

is seen to be roughly -50.

The equivalent circuit of the impact modulator is given in Figure
4,3.3-7. For the device under consideration the gain A has been determined
above to be roughly -50, at least in the straight line portions of Figure 4.3.3-4.
In the low input pressure region, the gain is less than this and the internal
impedance is nonlinear.

431




T TTT T
T nu T
T u 1
o 1 -
" .
" ue st
T " = )
+ 1
" 1 "
t t ¢
g 1 ; ra s
1 e
1 e O e 1
13T e ot u S
1 " - L
T T
1 i e T Il T
t t + +
I ins T 1 Co T
e
Tt s Jnenat
; T i 1
3 Fnmul t I I
: ' w e : »
1 " T
T "
1 1 T .
" T s T 1
T t
" i t
T t T A T "
" 1 T 1 — A
T T ! ass
) :
t .
A husay peusE
195 i T I
: BEp et
S PESEY S e
BORd SEUSN
=¥ — T
pons pae: —
i pEisiy) DG SREES SuEy Sees
- JEOOE S by
- ) ~
1793
Fi
ry=4
X7
tr}
s

P

hw Sad
) ot
e §
d
—r O et P e e
Wt | JRER S
JUhas Sbhus Bwes
bol B s et
.... Eneey e
I § IR B B S
T T
ﬁA -
T T T
n
i
InEt
i ¥ :
t T }
o Hrr 1
i o I 7
1
1T
o
e E
imwe
T
Imon

3.3-6 Input-output curve for a typical impact modulator.
4-32

Figure 4.



Figure 4.3.3-7 Low frequency equivalent circuit for an impact modulator.
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40,3.4 Dynamic Characteristics

With slight changes, the incremental or small-signal, equivalent
circuit is the same as the steady-state equivalent circuit. In the steady
state equivalent circuit the resistor, R,, represents both the resistance of
the cylindrical orifice into the collection chamber and the resistance of the
output tube. In the nonsteady-state case, the collection chamber volume acts
as a caoacity to ground, sandwiched ketween the input orifice resistance Rg
and the output tube resistance Rt. This is shown in Figure 4.3-4-1. A typical
value for the collection chamber volume is 0.01 cubic inch. In general, R
will be much larger than Rt. The resistance Rty can be estimated from plots
such as the one shown in Figure 2.2.2-1 and 2.2.2~2, A typical value wouid
be 100 fluid ohms,

The input resistor Ry is an orificej and, in general, the incremental
resistance of an orifice is not the same as the steady state resistance,
particularly at the low pressure drops which are customarily used in the control
jets. As far as our analysis indicates, however, the gain A is the same in
the steady state case as in the small signal case.

The transverse impact modulators are usually operated at such préssures
that the emitter jet emerges from the nozzle at near sonic velocity. 1In a typical
impact modulator, the maximum distance traveled by the emitter jet before
interaction with the collection chamber is 0.100 of an inch. The distance from
the location of the control jet to the collection chamber is still smaller,

0.084 inches, Considering even the larger distance of 0.100 inches, it is seen
from Figure 4.5.5-1 that the phase delay associated with this distance of jet
travel is less than 3 degrees at 1,000 cycles per second. The frequency must

be increased to nearly 4,000 cycles per second before a phase delay of 10 degrees
is achieved.

It is clear that the phase delay, or the phase shift,associated with
transit time in the transverse impact modulator is negligible compared with
the phase shift contributed by the resistance-capacitance circuits inherent in
the modulator.

Let us know use the equivalent circuit of the impact modulator to
calculate a gain of such a device in a circuit. Load the output of the modulator
with an orifice, say one with a 0.015 inch diameter opening. Keep the frequency
low enough that the capacity of the collection chamber can be ignored. Assuming
a flow coefficient of 0.6 for the orifice and a pressure drop acrossed the
orifice of roughly 3.5 psi the resistance of the orifice is approximately 90,000
ohms. The low frequencies equivalent circuit for this special case becomes
that shown in Figure 4.3.4-2. The change in the output pressure divided by the
change in the input pressure is given by:

APy _ (50)(100,000)
AP; 90, 000 + 100,000

which gives roughly 25 for the gain of the impact modulator stage with this
particular loading, and at the specified pressure levels.
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Figure 4.3.4-1 High frequency equivalent circuit for an impact modulator.

100,000
O—v— VWA— O p,
§ 50p, 90,000
(o)

Figure 4.3.4-2 A loaded impact modulator.
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For many commercial applications of the impact modulators a few cycles
per second bandwidth is all that is needed. Measurements have shown that the
present devices, which have been fabricated for the commercial market, work well
to at least 30 cycles per second. Good results are obtained for smaller non-
commercial devices up to 100 cycles per second. Little or no phase shift in
sianal is observed at these lower frequencies., These measurements are not
adequate to verify the correctness of the small signal equivalent circuit
presented above. The data is not inconsistent with the theoretical model however.
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4,3.5 Interconnecting Impact Modulators

The construction of circuitry using impact modulators requires a
technique for interconnecting the fluid amplifiers. This section provides a
step~wise procedure for making such interconnections.

a. Determine the pressure required for the output of the final stage.
Current limitations are that the impact modulator has been designed for sub-
sonic operation. For air therefore, the power jet pressures are limited to less
than 1.9 times ambient pressure. Output pressures will not exceed approximately
0.6 times the supoly pressure).

b. Determine the output flow required from the last stage. From the
transfer curves for available impact modulators, select the best one for the
output requirements. The flow requirements may be met by paralleling two or
more units in the final stage.

C. Having selected the unit, use the transfer curve, (Po versus Cb)
to determine the "no control signal®™ operating point for the final stage. A
typical set of curves is shown in Figure 4.3.5-1. The load line for the final
stage will intersect this point (Po, Qo) and will go through the origin of the
plot.

d. Using the plot of P, (input control pressure) versus Q, having
lines of various Py's, sketch in the load line points (this will provide a
"dynamic transfer curve"). The range of P; can be directly determined for any
desired range of P, (see Figure 4.3.5-1).

e. The maximum P; needed to drive the final stage will now be the
maximum P, of the driver stage. The of the driver stage can be determined
by using the data of Section 2.1. Having determined the Pp and Qu of the
driver stage, the design procedure continues for the next stage as in steps
a, b and c above.
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4.3.6 Frequency Response and Noise

If a pressure or flow transducer having a high frequency response
is connected to the output of a single impact modulator, it will be noted
that there is considerable fluctuations in the output pressure and flow.
These fluctuations constitute "noise". It has been observed that the "frequency
of the noise" appears to be a function of the size of the impact modulator.
However, the calculated resonant frequency of the collection chamber of the
TIM16 impact modulator, for example, appears to be at least an order of
magnitude higher than the observed fluctuations. There is little in the
literature concerning the dynamics of impacting jets which would indicate
the source of the noise. Therefore, an investigation of the mode of noise
generation in impact modulators remains to be performed.

Optimizing the commercial, impact-modulator for higher frequency,
control-system circuitry is expected to be accomplished in the near future.
Paralleling the development of higher frequency response will be the develop-
ment of amplifiers with a higher signal to noise ratio. Investigations are
currently underway at Johnson Service Company to minimize the output noise.

The noise as well as the frequency characteristics of impact
modulators seems to be size dependent. One small device tested (power orifice
diameter of 0.005 inch) worked well up to 200 cycles per second and had a
much better signal to moise ratio than the larger devices (.016 inch orifice).
This same small device worked, with considerably reduced amplitude, up to 800
cycles per second. It must be pointed out, however, that there were problems
with the signal generator at these higher frequencies and the device limitations
have not been adequately determined.

In defining the signal to noise ratio for fluid devices, it is neces-
sary to specify the bandwidth over which the noise is to be measured. For
example, there may be considerable noise at 5 kc, but if this noise is incapable
of modulating the downstream circuitry, it is of no interest to the area of
concern.

Noise is a problem in the dynamic operation of both the single unit
and the cascaded unit. However, it must be pointed out that the level of noise
in the impact modulator is considerably less than most pure fluid devices.
As a matter of interest, the noise level for the impact modulator circuitry
is cited in Reference (6). Page 15 of this report states: "The noise encountered
in the operational amplifiers varied somewhat, but was usually in the neighbor-
hood of 0.003 psig, where the output range was 10 psig." Thus, if we define
the signal to noise ratio as
_ Qutput Range
S/N = Output Noise

The signal to noise ratio of the above becomes 333.
In one case cited in the above reference, the noise was as high as
0.15 psig. This would give a S/N ratio of 67. This amount of noise was

based upon a noisy first stage in an amplifier. Work presently being done by
the Johnson Service Company is expected to improve the S/N ratio markedly.
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In summary, it can be said that the impact modulator is adequate
(even in its standard commercial design) for most fluid control-system
applications. The major, device design-problem at present is to increase the
signal to noise ratio.
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4.3.7 Dynamic Tests of Impact Modulators

Conceptually, it is simple to test the dynamic response of a fluid
component or of a fluid system. In actual practice, the dynamic testing becomes
difficult. To test components which have a frequency response of a few hundred
cycles requires the use of a signal generator to produce a sine wave of these
frequencies. In addition, some type of a fluid to electrical transducer is
needed which itself is responsive over the range of frequencies used. Since
noise can mask a signal making it difficult to observe the phase shift, noise
can be, in fact usually is, a problem in fluid circuits. These problems are
typical of the instrumentation problems of a new technology.

Dynamic tests have been made on impact modulators and on operational
amplifiers constructed from impact modulators. The test circuit is shown in
Figure 4.3.7-1.

This same test approach can be used for pressure measurements as
well as for flow measurements. The hot-wire probes are removed and pressure
transducers (such as the variable reluctance pressure transducer) are put in
their place. The hot-wire amplifier is then replaced by the transducer
electronics. If it is desired, the oscilloscope can be replaced with a
recording instrument. Dynamic measurements on an entire amplifier or fluid
system can be using the same test circuit. It is only necessary to replace
the device under test with the circuit to be tested.

Dynamic tests on the impact modulator were first tried using the
hot wire anemometer, but the sensitivity of the hot wire to noise resulted
in signals which masked the phase relationship. The dynamic tests were then
repeated with the variable reluctance pressure transducers. This technique
gave fair results.

Figure 4.3.7-2, shows typical test results in the form of reproduc-
tions of the tape from a Brush Recorder. In this Figure, the top pieces of
tape show the calibration. The center piece shows the response to a 5 cps
input. The bottom tape demonstrates device operation at 30 cps. It will be
noted that at 30 cps there is no detectable phase shift between input and
output waveforms. Separate tests were made using an oscilloscope in order to
determine the device's characteristics at considerably higher frequencies.
One device of a smaller size than the one tested above would operate up to
800 cycles per second. However, the gain of the device was markedly reduced
at this frequency. This same device had a 90 degree phase shift at approxi-
mately 700 cps.

In general, the impact modulator having 0.016" diameter input
orifices has a Bode plot approximately as shown in Figure 4.3.7-3. Exact
valuation of the break frequency is difficult because of the noise at the
output. The currently available devices are designed for commercial use
with no particular frequency requirements above a few cycles per second.

The noise generated by the device is apparently related to the

size of the output or collector chamber volume. The frequency of the noise
is of the order of 1 to 2 thousand cps in the smaller devices and becomes

Ll




"1IN0.I10 1891 J1WBUA(]

JAIVA 37033N

39NVY9 3¥NSS3Hd
3804¥d 3¥IM 1OH

¥3IdITdNY H3L3WOW3NY
3ovyl 1vna ‘3409S017119S0

401V 1no3y

-_ N N O W N

ININdIND3 ALD

IN3A

—

avon

379 VId VA

1-,'€¥% 2In3d1g

¥ouLvino3y 4

FAIVA 371033N

” 39nv9O JHUNSSIYd

Alddns S

&®
C)

3808d 3Y¥IM 1OH

dMH

L

1no
TVNOIS

|

1S31 ¥43ANN LINN

wd
S Y m— %4 —— X Y
dl Alddns , AlddnNns
o) = ®
431411dWV NI IVNOIS
l_l Y3LIWOWINY | dMH]|
8 1LNdNI
VAN b u3i41nd Y MOLVHINIO
uw_wmwwj.__wmco ¥ILIWON 3NV TYNOIS y s
. S1LYWN3Nd rO.
INAS m_w

L2



%
A
1
t
T
x
t
Y
1
t
=
+
%
¥
X
T
+
E=
F
—
4
:
f
3*
=)
)
¥

-

z Massnes 1H I i

g s B 1 bt

g S 1 H+ [T

2z HHTT! T uf H

o 1
CREPRERRTL L o "

7
re

AT e

i S il it o v

—_—

AT
! L
¥ et
T 2 2 3iit
3 g it
+ 1
T Tt

x:

11 L a=yas

3 = = Ia
L ;

o St

—1—1 T

 — — — —

—r—

= L e w—

Y —r—t

3 r—r— %

— bt —\—%

T—F—7—7T

—F—F—7

i —" —

; " — —

} — —

PRINTED IN U.S.A.
D e e e =
Fi

EE

e

=

%
A
1+
HEE
T
u
&
3
%
3
3

o

SH INSTRUMENTS

1

=

1
4
s

7
1
1

B

! SEC

-
=
g
<
-3 4
S ol
ZH T
z &ulll
Q
£k 2
[OR R 2l
v B
-d
(%] aad
X 2 [
o £
- 4 S
< H
ol
¥ iH

ings for an impact modulator.

b3

Input and output record

Figure 4.3.7-2




‘1038 Npow 10edw] Ue X0y 10[d 9pog €-L'€’¥ oan8i1g

Lkl

NIVO

80 Ni

I T ! 1 I
_ [T T i !
i
4
i1
!
0
00I
08
2 I
I
> 09
s ﬁ
m ,
v ot
I i
g b
m lrl RN AR
oz Sy
A BANI
1 BEE!
| it ,
0 : e —
I |
T =
il | 4
{ ﬁ ; ,M
H | ! I I H
i — S gt
. R BN ,
i T
< | ik
| L
! B ,
it I 1 !
: 9 e
" o : *
It T ] i
L ! [ t
i | i |
i 1 I M»
e .
T T 8 i ! l
| : U A i i
! ! i !
T ;
T 1
s i i 1
o @ ~ w ) - L
o ® ~ o n - m ~ -
mg o0 ~ w o - o o~ —




lower for somewhat larger devices. Future work planned by Johnson Services
Company will optimize the device geometry to attain better high frequency
performance and a better signal to noise ratio. As pointed out in the section
on instrumentation, any jet-edge, or impacting jet systems, will create high

frequency noise. The design goals are to insure that the noise is well above the

desired frequency response of the device. Similarly, the transducers should
be selected so as to be responsive only to those frequencies of interest to
the experimenter.

Figure 4.3.7-4 shows the results of tests made at Johnson Service Co.

An impact modglator was tested with various volumes added to the output (5,
10, and 20 in”). The effect of the added volumes on the frequency response is
to reduce the response to a few cycles per second.

As indicated previously, a complete operational amplifier employing
impact modulators has been tested and shows excellent dynamic performance.
The recorder charts reproduced as Figure 4.3.7-5 show that for 25 cycles/
second input signal, the phase shift is approximately 300. This compares
favorably to a single vortex amplifier where the phase shift is 25° at a
frequency of 10 cycles per second (See Reference 14). Recorder charts at
90 cycles/sec are shown in Figure 4.3.7-6.
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4,4 Proportional Circuit Requirements
4.4.1 Linear Fluid-Resistors

In fluid amplifiers, and particularly in the feed-back circuit of
operational amplifiers, it is desirable to have linear fluid-resistors. In
liquid circnits linear resistors are readily obtained by the use of capillary
tubes operating in the laminar flow region.

With gaseous amplifiers, however, the problem is more difficult.
Capillary tubes, while linear for small pressure drops, are not linear for
large pressure drops. Hence, in order to obtain linear resistors for gases
using capillary tubes, it is necessary to ensure that the pressure drop across
any given individual resistor is small. The term small is dependent upon the
resistor, but for those resistors usually used in pure fluid control circuits,
a pressure drop of 20 psi, or less, is small.

Non-linearity in a capillary resistor can arise from at least two
sources; the finite compressibility of the fluid and the onset of turbulence.
The onset of turbulence at the desired pressure drop can be eliminated by
using sufficiently small tubing. This is shown in Figure 2.2.3-4. It is seen
from this figure that the smaller the tubing, the larger the allowable pressure
drop before the onset of turbulence.

The expected deviation from linearity due to compressibility is shown
by line-c of Figure 2.2.3~2, where line-a of the same fiaure would represent
the flow if the fluid were incompressible. Curve-c of Figqure 2.2.3-2 is
theoretical and was derived for smooth tubes. Fortunately, this theoretical
law is not followed too closely for most practical fluid resistors. An example
is shown in Figure 4.4.1-1 which shows the pressure-flow relationship for three
Corning glass-resistors. They are quite linear up to 20 psi, the maximum
pressure drop at which measurements were made.

One method of making fluid resistors is to flatten tubing until the
opening is quite narrow. Pressure-flow curves for fluid resistors made by
flattening .093 I.D. brass tubing is shown in Figure 4.4.1-2. The deviation
from linearity at higher pressures is small but evident. The deviation is in
the direction predicted by the smooth tube theory of Section 2.2.3,as shown in
Figure 2.2.3-2.

Laminar resistors can also be made by casting fine wires in epoxy
and then removing the wires. Pressure-flow plots for 3 such resistors made by
casting epoxy around .008 inch diameter wires are given in Figure 4.4.1-3. Also
shown in the figure are lines representing a linear resistor, labeled "theoreti-
cal laminar flow" and a line with the slope the pressure-flow curve would have
if the flow were completely turbulent. The deviation of the experimental plots
away from linearity and toward turbulence are evident at the higher pressure
drops.

kb9




*SI01SIS01-SSB[3 SUIIoD) sa1yl 10y eiep MO[d T-1'%'% 2In31d

23S/S87 NI MO

ol olxg
4 S-16 8 9 ¢ ¢ 9-¢

| 4
AN t
T4 . Y T R aad i A1 LABRY IR
T T B T T T )
:, il P i I C |
] i f : ' T T :
4 I T T 1 T
Sas M T
i J i
1. », “ W T
i | -
; 1
i e : v
+ T T ! I : A
oqm 1T — 4
T i Il 1 v T 1 i
i S I ; W
] It it
i SSsScEES S ,
T ' - : ot & T
T HHH : N
T H } 1
[ Jaas H I I
4t - > - £
T R s Sape A
— >
- 2 3
¥ = A , = = b
T | J T .4 .
! - 1
" (o]
G -
G nae 7
: ! |
: : I ; 9
v 4
9 —r e - ggv a8~ by - : 9
4 1 AAS = i — pome 8! 7
L e B P : L
id i W e w . ju—.
A E= P
: b .4 o, Q
o L 2 T : 8
N 2 A = : 2 S Eeri e 25
° Z Al S{EEiEaeE i 7o e :
1
15 ¥ R EARA
yd A/ _ ; : , o] |1 | |
| o’ AV I SR Lol ]
T | i H T ' i j M,W,_
. ; g . 1T
y. 3 B 1 ! I ! iy
N o M ]
/ AN t t
I !
T : i
: T N i
> , o | L B u
4 : -t ? ” + 4
! ! ' i H
I T ! H 1 ! T !
¢ i T
.y T 10
s _ T I ,
1 B T
: : — e
€ . ] T
! T
1
i
Saaw : 28 H .
4. + * L4
v ' i I
I !
I i 1 :
! ! i ¢
Py s ; ] g
SEET ann san: "
ﬂ | : ==N
1 =4
9 e e e
9 = ;
am i
L £
‘ + . Q
8 t T t : 8
;
iTEas $38 ! ; " &
6 i : £ : 5
. e Hasis it : 3 I
5
L 9 b ~

1 -50




yO!

*sI03s1891 aqnl xoddoo pausiiey} 29Iyl 03 MoTd Z-1'¥%'% 2In31g

03S/587 NI MOT4

cO1xe ¢.0l 5.01XE 9.0l

y [
1 I
e .
ML -
, ! _
1
Z 4
0 -
i i
£ £
+. -4 - v
b b
p
L
G ' S
aif
9 € 9
L : L
8 2 T 8
o 1 SEER - | I
64+ - T — . 6
T4 T ! 1 f T I
SR I b4 -t
i A
|4 o
1
5 R
4 i -
4 i - 2
1 i I Z
1+ (NS .
T -
4 H '
N . :
€ am o et €
: 11 P
SaEga i
2 £ Bess : N
L4 (1) 14
:
Lh
] 4
(s L L i C
3 T 3
HITE
a +4 he qQ
] oo s 7 9
L SRR /
: QR it Q
o = -
Py ittt S .
6 t + 6
14 “ e 1
1) .

4=51




ol

‘sax1Mm auly punote Axodes Supiseo Aq spew SIO0ISISOI 921Ul I0F MOTd ¢-1°%'¥F 2In31d

303S/S87 NI MO1d
gOIXE ¢ Ol
- €

rd
| 2 > ¢
S % € 1 1
I T
| P i
* e il
i ! T
: HIW, i 4 | * L
; | MV ANEPE I L ,
; T T _ T T T T
I { Il 4 ] |
T T ) P p—
» i : A A A 0 B
2 f » T " y 4 ,, z
it f r- ; » 18 o e
I it + : v 1 0 ——
{ : T - ! N —
; W _M <. : 8 e e Y — 1 T €
1 i e po—
“ H I T PPl «w m y' 4 T - : t T
v 4 T
T
i e T : bk o —r i ] feu § pes o =
: HESt SEEE 74 dnane ns A T e Hixl i ; G tees o] S v
. Hia T 1 it : 4 t H4 T =t A B
¥ ! ! T [ I & 1 T [ A | T i i
; 5 N\ 4 H ! i i
i T ] o i 1 i .
; H i : f o I [ oaa s e ma ! aunesma R al ¢
E; H t . T - Tt R NS BN IpEne | T S
T t i T t ” T gmma:
T T [y SO S
+ 17T Q
9 : ! i 1 & 1 T f— [ [ faee ree ¢ Nam; T T i T d
; : i
t 1 T A T 8 T 1 I 63 1dans Amah s I Sean: e ,
oA Lo L - L Tl . I i 1 '
1. y A , = T T
s i P A e o = : .
s R —— ; el wn okt mibud T i 15
SSE% L ! 3 S : g
8 4 I3 1337 5 [3s = ; ,
— R Smmr T - how vy T T S S T P
64 F IRE—— s ey pe=s T b
i 2 polinammdumimg Sl [ N STH= T
= — I
I 1
T
i
i T .
1 Jood Wkr 1
[T s |
! | IR LAY
[ e 7 ;
] 7. A
i 7 RN a
: V4 ; I ﬁ
¢ z #_ 11
H I
] yARREp AW o I
d I i 188
: - H
Y amn , GBS A
- ¢ H T !
e s ) L 0 A =
) 1ol b 4
€ T F 1 B " iBE alua
I e I 17
— e :
S5 S EEsES ks i 2 5 s
¥ . ¥ T + T
; : — 1 1 ;
! . :
Hi ! I He T e
S HH 1 t T T _W, W o H paEs: s
) M : i THE M 1
" a b .
+ = i —1
? _ i e i e E R R EE i R e e
gEszaz=s ki 533 fe2es ki amee S T e e AN IR -ssstjEaas F i,
—+ = mam i = + Ty L L T P— A
L = o P sl e EERSES it - fisass I8EES ER NS T
= Esg Reed aom i sl ] : T —
e o v g g e 7 ESp jhgmgRas 91 - e e (1o e o
8 e ik = = 3 8
. ” : AEERES i il eSS N
a Ees Eos ; + i I i e e
o P e = i3S eSS SR 8 =
: 13
13

=52




4,4,2 Variable Fluid-Resistors

For a given fluid, the principal factors which determine the
resistance of a laminar-flow resistor are the dimensions of the resistor.
Hence, a variable resistor is obtained by changing some dimension of the
resistor.

A tapped, or stepped, fluid-resistor can be made by simply taking
a long capillary tube and putting taps along it at various points. The
resistance can then be varied by changing taps. 1In contrast to electrical
circuits where unwanted taps can simply be ignored, the umwanted taps in the
fluid resistor must be carefully sealed off.

Completely satisfactory variable fluid-resistors are not available.
One common method of constructing a variable fluid-resistor is through the use
of a cylinder and loose fitting piston. The space between the cylinder and
the piston is the constriction which gives the resistance. Pushing the cylinder
in and out varies the length of the constricted area and therefore varies the
resistance of the resistor. However, the variable volume at the end of the
piston acts as a variable fluid capacitance which is often highly undesirable.

The lack of adequate variable linear-resistors does not hinder the
experimental design of fluid circuits, at least on a D.C. basis. Where the
size of a linear resistance must,or can,be found by experiment, a needle valve
can be inserted into the circuit and adjusted to the optimum value. The value
of the needle valve resistance is then measured and an equivalent linear
resistor is substituted in the circuit for the valve. Needle valves are highly
nonlinear. Therefore, when measuring the resistance of needle valves, it is
important to make the measurements at the same pressure levels as those found
in the circuit being developed.
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4.4.3 Fluid Capacitors

Ideally, only compressible fluids show capacitive effects.
Incompressible fluids do not show capacitive effects as such. Most liquids
are sufficiently incompressible that capacity need not be concerned at least
in most low pressure designs. In some cases the elastic properties of the
fluid system must be considered. For example, in very high pressure hydraulics
systems the walls of the fluid transmission lines elastically expand under the
high pressure. These can feed energy back into the system giving the effect of
a capacitance. However, for most low pressure control systems these dffects can
be neglected.

In circuits employing compressible fluids the analog of the electrical
capacitor is simply a volume. Even small volumes are quite important in fluid
circuitry, in that a volume is small as 1/10 cubic inch is a capacitance of
sufficient size that it must be considered in many circuit designs.

Most often the problem is not to obtain a fluid capacitor, but rather
to so design the system that the unwanted effects of capacitances are minimized.

One problem with fluid capacitors, and particularly in circuits where
frequency shaping is desired, is that without moving, or deformable, parts
fluid capacitors to ground are the only type which can be obtained. In order
to obtain a series fluid capacitor it is necessary to use a moving part, a
diaphram for example. Where it is necessary to have the equivalent of the series
capacitor for some desired shaping function, the effect this can be accomplished
by the use of differentiating circuits employinag operational amplifiers. This
technique is discussed in Section 4.6.
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4.4,4 Electro-Pneumatic Transducers

The transducers of fluid circuitry fall into two classificationss
transducers which convert some quality such ag voltage, current, position or
force into a fluid pressure or flow, and those transducers which convert a
pressure or flow into a position or force or some other quantity.

Transducers are readily available which convert an electrical signal
into a pressure. Static test results on one type produced by the Johnson
Service Company has shown it to be quite linear over an output pressure range
of 0-20 psig. The bandwidth of this particular transducer is roughly 6-cycles/
second. Developments are underway which should increase the bandwidth by a
factor of 10.

4-55




4.4.5 Flapper-Valve Transducer

A flapper valve can be used as a position-to-pressure transducer in
fluid circuitry. A cross-sectional drawing of a flapper valve is shown in
Figure 4.4.5-1. The flapper valve consists of a volume, V, which is connected
with a constant supply pressure, P_, through an orifice or constriction. Also
connected to the volume is a downstream orifice or nozzle. The free jet which
emerges from this opening impinges upon a flat plate of "flapper."™ The movement
of this flat surface is the input signal to the valve. The output signal is
taken through a tube connected to the volume, V.

The operation of the flapper valve is as follows: the supply pressure,
p s forces a fluid flow through the upstream orifice. A portion of this flow

gSes out through the downstream orifice to the atmosphere. As a result, the
pressure, P, in the volume, V, will lie between atmospheric pressure and the
supply pressure. The resistance of the downstream orifice is dependent upon
the distance, x, between the end of the nozzle and the flat surface. As x is
decreased the resistance of this orifice increases and the pressure within the
chamber will increase.

A set of typical curves showing the chamber pressure for a flapper
valve as a function of the displacement, of the flapper is shown is shown in
Figure 4.4.5-2. These curves are seen to be highly non-linear. A linear
relationship between the input and the output of a transducer is highly desirable
and can be obtained in the flapper valve by replacing the flat surface by a cam
as shown in Figure 4.4.5-3. As the cam is moved laterally, the distance x
changes. By properly shaping the cam, the chamber pressure, and consequently
the pressure output signal, can be made to vary linearly with the lateral
movement, y, of the cam. It is evident that the cam need not be of the type
showing in Figure 4.4.5-3 but could be a rotary cam. The pressure output would
then be a linear function of the angle of rotation of the cam. A set of curves
for a typical valve cam combination is shown in Figure 4.4.5-4.
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Figure 4.4.5-1 Flapper valve.
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4.,4.6 Pressure-Position Transducers

A pressure to position transducer, or a pressure to force transducer,
is readily obtained by the use of bellows. Metal bellows are available in a
wide range of sizes and force constants, and as long as the elastic limit of
the bellows material is not exceeded, the transducer is linear.

In order to reduce the fluid capacity of the transducers, the bellows
are usually constructed so as to minimize the inside volume. This is often
done merely by plugging the bellows with a solid cylinder. Where bellows

expansion is large, the change in fluid capacity with expansion will have to be
considered in the circuit design.
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4,5 Circuit Analysis
4.5.1 Introduction

The analysis of fluid circuits falls into two areas; steady state
and dynamic. The steady state analysis is relatively simple and straight
forward. The expressions describing the pressure-flow relationships are well
known, have been experimentally verified, and have been or can easily be
supplemented by empirical data where necessary.

The dynamic behavior of fluid circuits is more difficult to analyse
and is not completely understood. A great deal of work has been done,
particularly in the small signal region and fairly good treatments are available.
Large signal and transient behavior of fluid circuits is not amenable to analysis
at present. Consequently our dynamic analysis of fluid circuitry shall be
limited to small signals and shall further be limited to a lumped-parameter, low
frequency,equivalent circuit.
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4.,5.,2 Orifices in Series

As an example of steady state flow calculations, consider the problem
of finding the flow through, and pressure division between, two orifices in
series. As a special case, assume that the two orifices each have an orifice
diameter of 0.030 inches and a flow coefficient of 0.6. Further let us consider
the case of a constant pressure of 20 psi applied to the upper orifice and let
the lower orifice discharge to atmosphere.

Denote the pressure drop across the first, or upstream, orifice by &Py
and the pressure drop across the second, or downstream orifice by A Po. Then,
for a given AP, the drop across the lower orifice is given by 20-AP;.

The flow through the upstream orifice as a function of pressure drop
across the orifice can be found from Figure 2.2.5-7. This flow is plotted in
Figure 4.5.2-1. Since the pressure drop across the second orifice, O Py, is
directly related to APy, the flow through this orifice is a function of A P1.
This can be found from Figure 2,2.5-4 or, more easily, from Figure 2.2.5-5.

In Figure 4.5.2-1, the flow through the upper orifice increases with
increasing & Py, while the flow through the lower orifice decreases. The point
where the flow lines cross gives the actual flow through the series combination.
This is seen to be roughly 3.1 x 1073 lbs/sec. Of the 20 psi supply pressure,
7.3 psi will be dropped across the upper orifice and 12.7 psi across the lower
orifice.

It is seen from this simple example, that although two series orifices
are the same size and have the same flow coefficient the pressure does not
divide itself equally across them. This is do to the nonlinearity of the
orifice resistance.

Lh-63




T Y TT T T T TTTTIITT T T T T
1 T I 1 T 1 i 1 17 + 1 I 1.
T 1 T 1 T 1 1 1T T 1.
1 1 T 1 )| T 1
.~ L - 3 1 )
t ’
> ' . T
1 i ¥ 1 T
1T 3 1 T T
nm I ns t :
T T ’ T
T 1 T 1 T T 3T I H
T vl paw 4 T T 1= T
1 | 1 T
I 1 i
T + T
T 1
1 e i T A
: L B
t N )
T T
T T )| T T
r T T t T
1 i 1 T jun: T
N T
¢ O T
T e T T
. 4 e 4
A8r" A
= 5 B, - « " 1 »
1. e i T ¢ w t —r T
— )| : I
T 1T 4 t
T 1T y 2 t i T
T jug T 1 T T
B as 6 T T ju 1 T
as \ I L 1
- X4 v T
: i 1
- T 1
)
Ll 1
T T T
T HHOHHH ! t T> T in jasan: !
+ 12 HHT s jus: aaas aamm: 1
e T I : muss mau, jauni T
et m t ani
pe e 1 : ) T
1 — 1 1
= T : o S sas
1. I T T
! Ry Ve + : -9 T
1 L 1l 11 - e 1
T T T Y
- T T 1 T = 1 T T
Tl * : d B : : m
il .l IS
) f
res - ——
; Bpus s Iba I T
T , 1 T XX T i1
. ] T1 T T ‘”4 + ﬁ_
H T 13 T n T
T : 1 T T t t H }
i T T + 1T w # M H il
s =TT 1 1 =
_ HED i SRt SEst fpEaais 4t
+r o, s " T +
: I i 1
T T
1 1 o 1 )
T H - 1
I i 1 I +
: T ey T
i T 1 11 ¢ B SRS T+
8 1 T ) o uut 1 s Samms i t ae,
+ + - - ; =y
T T
' T =
¥ 7 + T
1 T L e
11
1 ¥ A s T T T
Ja i T i s T i 1 1 I
f 1 T H ! T T Tt !
; aa 1 T T . I
t " 1 ) T 17 T
t t T I i T TTIT 1T
T 1 T T 1 T I
! 1 : pul
: + ]
T T :
’ T i + "
+ 1 + It s mas i
. ¥ T T T ! -
; Aigss _ s : :
1 T 1 T 1 It
I 1 !
T = t
bt T I H ] T : t
18
"
maan o 1
e T . T t
an g HHH { 1 >
' + T
U 1 1 1 b 1
Tt o T 1 - T + ) !
I T L T 1
" o ; t
1
T 1
i 1 e b
5 : : : : *
r 1 I L t t + I <
T B T t jas) al T T ;
; +H H T TR : R
I u s i T =as s I ; 1 1 Hr 13

Figure 4.5.2-1 Flow through two equal sized orifices connected in series, with an upstream

464

pressure of 20 psig and an atmospheric downstream pressure.



4,5.3 Flapper Valve

As an example of dynamic analysis, consider a cam-operated, flapper
valve which linearly translates a cam movement into an output pressure. Such
a transducer is shown in Figure 4.4.5-3.

In a lumped parameter equivalent circuit, volumes become capacities
and restrictions become resistors. In the flapper-valve transducer shown in
Figure 4.4.5-3, C will represent the electrical equivalent of the volume, V,
while Ry, Rq and R, will be the equivalent resistance of the upstream orifice,
the downstream orifice, and the output tube respectively. The supply pressure,
Pg is represented by a voltage Vg. The equivalent circuit is shown in Figure
4-5.3-1.

The signal input to the valve is a lateral cam movement y which results
in a variation in the distance x as shown in Figure 4.5.3-2. In the equivalent
circuit, the cam movement is equivalent to a variation in the resistance Rj.

To estimate the bandwidth or frequency response of the bridge, visualize a small
step change in the distance x. In the equivalent circuit this would correspond
to a small step change in the value of Rg. Analysis of the electrical circuit
shows that following the step change in R4 the capacitor C charges ( or discharges)
exponentially with a time constant equal to the capacity C times the equivalent
resistance of the three resistors Ry, Rpy and Rq in parallel. Since the change

in the resistance Ry is small, the value of R4 used in the calculation of the
equivalent resistor can be an average. From this, a time constant 4~ can be found.
This time constant is a direct measure of the bandwidth or cut-off frequency, f¢,
of the circuit. The relationship is

Sometimes flapper valves are designed and used in such a fashion that
the analysis is somewhat simplified from that considered above. Often the
resistance R, is so large in comparison to Ry and R4 that the resistor R, in the
equivalent circuit can be nealected. If the pressure in the chamber is small
under all operating conditions and the supply pressure Pg sufficiently large, the
upstream orifice runs under choked flow conditions. In this event, the voltage
Vg and the resistance R, can be replaced by a constant current generator. The
equivalent circuit then reduces to a capacitor, C, in parallel with a resistance,
Rgs the combination being fed by a constant current generator. In this simple
situation, the bandwidth of the circuit is that frequency at which the capacitive
reactance of the capacitor C equals the resistance of the orifice resistance Rq.
Expressed as an equation this becomes:

f—-_]-___.
c
27 Ry C

Let us now consider a specific example of a flapper-valve transducer operating
under these conditions.
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Vs V out

Figure 4.5.3-1 Equivalent circuit of a flapper valve.
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A cross-sectional drawing of the valve to be considered is shown in
Figure 4.5.3-2. The volume V is roughly 0.1 cubic inches. The amount of air
flow which is taken for signal purposes is so small that it need not be
considered in the analysis and the signal output connection is now shown.

The cam is contoured and experimentally the relationship between
the chamber pressure and cam displacement is found to be essentially a
straight line. The output pressure varies from about 0.21 psig to 1.25 psig,
with the pressure output at the center position of the cam being about 0.75 psig.
The supply pressure is 20 psig. Since the pressure in the chamber is always
less than 1.25 psiq, the upstream orifice always runs in the choked condition.

The time constant of the circuit can be readily found. Since the
upstream orifice is choked, the fluid current into the volume can be found from
Figure 2.2.5-7. This figure is a plot of pressure drop across an orifice with
a constant supply pressure as a function of current through the orifice, for an
orifice with a diameter of l-inch and a flow coefficient of 1. Since the orifice
is choked and the upstream pressure is 20 psi, the current for this l-inch
orifice is seen from Figure 2.2.5-7 to be 0.86 1bs/sec.

The actual current flowing through the orifice under consideration can
be found by multiplying the 0.86 lbs/sec reference current by the actual diameter
of the orifice squared and the flow coefficient of the orifice. The diameter of
the orifice is .048 inches, and the flow coefficient for an orifice of this
nature will be roughly 0.6. Multiplying, the actual fluid current flowing through
the orifice is found to be 1.19 x 102 lbs/sec.

. Since the upstream orifice is choked under all conditions, the flow
through the downstream, or control, orifice will always be 1.19 x 103 1bs/sec.
When the chamber pressure is 1.25 psi, the downstream orifice resistance is found
by simply dividing 1.25 psi by 1.19 x 1073 lbs/sec. This gives a resistance of
1050 ohms as the dc or steady-state resistance of the orifice. When the cam is
moved through its full travel the resistance of the orifice is decreased, and

the pressure in the chamber drops to 0.21 psi. In this case the steady-state
resistance is equal to 0.21/1.19 x 10-3, or 176 fluid ohms.

The pressure in the chamber is quite small, and it is seen from
Figure 2.2.5-5 that for small pressure drops the incremental, or small-signal
resistance of an orifice is approximately twice that of the steady-state
resistance. The incremental resistances are the values which must be used in the
calculation of the frequency response of the circuit. Consequently, the extremes
of the incremental resistance for the flapper bridge are twice those found above.
From the above steady state resistances, the incremental resistance of the orifice
is seen to vary between 2100 fluid ohms and 352 fluid ohms.

Knowing the volume of the fluid capacitor and the parallel orifice
resistance, the break frequencies can be found from Fiaures 2.2.6-3 and 2.2.6-4.
This is done by finding those frequencies at which the capacitive reactance equals
the orifice resistance. For the extreme values of the incremental orifice
resistances, the break frequencies for these orifice resistances are found to be
260 cycles/second and 1,500 cycles/second. A plot of break frequency, or band-
width, versus cam displacement is linear and is given in Figure 4.5.3-3.
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Figure 4.5.3-2 Cross sectional sketch of a flapper-valve transducer.
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4,5.4 Tube Terminating in Volume and Orifice

A typical fluid circuit would be a variable pressure source connected
to an orifice by a small-tube, linear resistor. Variations in the pressure
source would be the input signal. The output signal would be the pressure
applied to the orifice.

In a practical gas circuit, the orifice might be one of the orifices
of an active device. The linear resistor would be a separate component. Tubing
of some sort would be used to connect the resistor and the orifice. The inter-
connecting tubing would have a finite volume, and consequently a fluid capacity.
A sketch of the fluid circuit as visualized is shown in Figure 4.5.4-1. The
volume and the orifice act as a capacitor, C, to ground shunted by the orifice
resistance, R,» The complete lumped equivalent circuit is shown in Figure 4.5.4-1,
where Ry represents the linear resistor.

The transfer function of this circuit is:

G(S) = ——-—1 . __Ro_ (1)

where R is the parallel combination of Ry} and R,. In many cases, Rp, will be
much smaller than Rj. In this case, the transfer function becomes:

6(s) = Ro/Ri (2)
1+ SRoC

The bandwidth or break frequency of this circuit is:

1

fe = mRc

In words, the bandwidth of the circuit extends from steady state up to
the frequency at which the reactance of the tubing capacity becomes numerically
equal to the incremental resistance of the orifice.
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4,5.,5 Phase Delays Associated with Free Jets

In many fluid devices, a jet or fluid stream leaves one portion
of the device, say an orifice, and travels some distance before interacting
with some other portion of the device or another jet stream. This travel time
represents a time delay, and associated with this time delay in a phase delay.
The time delay,7 , is given by

where L is thd distance traveled by the fluid stream and u is the velocity with
which the stream travels. The phase delay f, associated with this delay is
given by

# = 360 fL/u (2)

where @ is in degrees, and the frequency f is in cycles per second.

In many air-operated, pure fluid devices the pressure drops across
the orifices are such that jets leave the orifices of the device at near sonic
velocity (13,600 inches per second). For the special case of an air stream
traveling at sonic velocity, the phase delay is

g = .0264fL (3)

This equation has been plotted in Figure 4.5.5-1 for travel distances
between 1/10 inch and 1 inch. A useful plot is also obtained by assuming that
the jet travels some given distance, say 1 inch, and considering a variety of
velocities. Such a plot is given in Figure 4.5.5-2 where the phase delay in
degrees per inch of travel is plotted as a function of frequency for a variety
of fluid velocities.
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4.6 Operational Amplifiers and Circuit Synthesis
4.6.1 Operational Amplifiers

An operational amplifier is simply a linear amplifier employing
feedback. The input signal is fed to the amplifier through a resistor and
the output is a constant times the input signal. The amplification factor
is determined by the ratio of the feedback to the input resistor. The use
of operational amplifiers in electronic control circuits has found widespread
use, and will be equally important in fluid control systems.

The transfer characteristics of an operational amplifier are
determined to a great extent by the characteristics of the feedback and input
elements. If these elements are linear the gain of the amplifier will be
linear, even though the elements, both active and passive, which compose the

amplifier are nonlinear. Hence, the emphasis upon obtaining linear fluid
resistors.

A great deal of effort has gone into the design and test of operational

fluid amplifiers, particularly in the case of the Johnson Service Company who
use the Transverse Impact Modulator as the active element in their amplifiers.
As a result, the major problems have been solved and excellent operational

fluid amplifiers are available. Their design has been discussed in Reference 6.
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4,6.2 Circuit Transfer Functions.

A major problem in control circuits is the shaping of the circuit
transfer functions such that the circuit is not only stable, but has adequate
phase and gain margins. In electronic circuitry, a wide variety of circuitry
is available. These provide tha circuit designer with a selection of transfer
functions which can be incorporated into the control system to give the proper
shaping to the overall transfer function. Due to the lack of a pure-fluid,
series capacitor, the vast majority of these circuits are not available to
the fluid circuit designer. While inconvenient, this is not a major hinderance,
since any desired transfer function can be approximated as closely as desired
through the use of simple lead and lag circuits. These are obtained through
using differentiators and integrators. Both types of circuits have been
constructed and tested using pure fluid circuitry.
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4.6.3 Integrators.

In electronics a commonly used type of integrator is simply a
capacitor which is charged by a current generator. The voltage across the
capacitor is used to drive a buffer amplifier. In pure fluid circuitry a
different approach to integration is used. One method which has been successfully
tried is the "Boot Strap Integrator."™ Such an integrator uses an operational
amplifier, a capacitor to ground, and two summing resistors. A schematic of
such an integrator is shown in Figure 4.6.3-1. The design of this circuit is
discussed in Reference 6.
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4.6.4 Differentiators

A differentiating circuit utilizing an operational amplifier and the
transfer function for the differentiating circuit are shown in Figure 4.6.4-1.
This circuit is commonly found in electrical analog computers and control
systems. Note that a series capacitor is required in the circuit.

In fluid circuits there is no series capacitor which does not involve
moving parts. Therefore, in a pure fluid system differentiation must be obtained,
or approximated, in some other fashion. One method is through the use of a time
delay and a summing circuit. Such a circuit ahd the approximate transfer function
for the circuit is shown in Figure 4.6.4-2.

This transfer function is readily derived. The transfer function of

the delay, shown in the upper leg of the diagram in Figure 4.6.4-2, when expanded
in a series becomes

Ae”S = A(1 -57'+527‘2 +2°°) (1)

Let us consider the case where the delay of the circuit is such that
s T<K1 (2)

When this condition holds the higher order terms in the expansion (1) can be
dropped. In terms of frequency, the condition (2) becomes

T << sz (3)

In terms of the period T = 1/f . the condition is

T << S (@)

In words, this means that the delay used in the delay leqg of the circuit shown
in Figure 4.6.4~2 should be much less than the period, T, of the highest
frequency wave which will be used in the circuit.

When the conditions outlined above hold the transfer function for the
circuit under consideration become

G(s)=B-A+AsT (5)

or

AST

G(s)=B- A 1+5 = (6)

k=19
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Figure 4.6.4-1 A schematic and transfer function for a typical, electronic
differentiating circuit.
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Figure 4.6.4-2 A schematic and transfer function for a differentiating circuit.
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This equation is of the form 1 + s’f"., which is the 'transfer function of a
differentiating circyit with a corner frequency of f¢ = 1/217743 where

L} A T
T = BA (8)
In terms of break frequencies, this becomes

' B-A
£ =75 f (9)

where the break frequency f. is given by

fo = L (10)

Hence, over limited, but still useful, frequency ranges; differentiating
circuits can be approximated through the use of a delay and a summing circuit.
The delay could well be the time required for a signal to travel along a fluid
tube of some sort, and the summing could be performed using an operational amplifier.

In order to make the gains A and B constant, the two legs involving the
gain constant A and B would probably also use operational amplifiers.
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5 APPLICATION TO TYPICAL FLUID CONTROL SYSTEM

501 Fluid System Description.

In this section the previously introduced concepts shall be applied to
the analysis of a typical, fluid control-system. A block diagram of the
control system is shown in Figure 5.1-1. In this Figure, a change in the
electrical signal to the input transducer results in a change in the output
pressure of the transducer. This pressure change is the input signal to the
fluid amplifier., The output of the fluid amplifier is fed to a bellows, the
output of which goes to a mechanical summing circuit. The output of the
mechanical summer operates a valve-actuator package, which moves the load.

A linear, position-feedback cam is attached to the load. This cam is a part
of a flapper-valve transducer whose function is to linearly translate the
position of the feedback cam, i.e. the load, into pressure. This pressure
drives a fluid amplifier with a bellows output. This output is mechanically

summed with the bellows from the input section of the circuit. This completes

the feedback loop,.




N

. INPUT
TRANSDUCER l
|

|

A L)

POSITION
FEEDBACK CAM

LOAD [@&——VALVE ~-ACTUATOR

OUTPUT

Figure 5.,1-1 Fluid control system




5.2 Flapper-Valve Transducer,

The flapper-valve transducer was discussed in Section 4e543¢ As shown
in that section, the equivalent circuit is a simple RC network whose transfer
function is

G(s) = __ A ‘ (1)
1 +T1 s

The gain constant A is found by dividing the total, output-pressure change
by the total cam displacement causing the pressure change, i.e.,

A = 1,037 = 0.346 psi/inch (2)
3

The time constant'T} depends upon the bandwidth of the circuit. For a central

cam position, the break frequency is roughly 900 cycles per second. This
corresponds to a time constant of 0.00018 seconds. The transfer function is
hence

G(s) = 0,346 psi/inch (3)
1 + 0.00018s

at the mid cam position.
Let us consider the worst case, namely the narrowest bandwidth. This is

seen from Figure 4.5.3-3 to be 260 cycles. This corresponds to a time constant
of 0.00061 seconds. The transfer function is hence

G(s) = __0s346 psifinch (4)
1 + 0,00061g

for this case.




5¢3 Operational Amplifier

The closed loop gain of the operational amplifier is 11. As shown in
previous sections, the output impedance of a typical impact modulator is
roughly 105 fluid ohms. The output impedance of the operational amplifier
will then be 105 fluid ohms divided by 11, or 9,100 fluid ohms,.

Tests at the Johnson Service Company have shown that the bandwidth of
an operational fluid amplifier is determined to a large extent by the load
applied to the amplifiers In the particular case under consideration, the
load is a metal bellows., A typical value for the volume of the bellows
would be 0.1 cubic inch, The frequency-characteristics determining circuit
of the operational amplifier then becomes 9,100 ohm resistor feeding a
capacity representing the 0.1 cubic inch volume, From Figures 2.2.,6-3 and
2,2,6-4, the break frequency of this circuit is seen to be 59 cycles per
seconde This corresponds to a time constant of 0,0027 seconds.

The force output of the bellows will depend upon the pressure within
the bellows and the area of the bellows., Considering a bellows area of
2 square lnches, the transfer function of the operational amplifier and the
bellows becomes

G(s) = _ 22 1bf/psi (1)
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5¢4 Valve-Actuator

The transfer function of a pneumatic valve-motor combination which is
suitable for a nozzle actuation system was obtained from the Vickers Division
of the Sperry Rand Corporation. This transfer function is shown in Figure
5¢4~1 and gives the output rpm as a function of the input force in pounds,
The first block shows a dead-band of plus and minus 5 pounds with a maximum
input of 15 pounds. This, in the equivalent circuit, is transformed into an
effective force which feeds a block with a transfer function of 19,200 RPM/sec-
1bs The output of this block is an angular acceleration. This is integrated,
giving an angular velocity which feeds into a dead-band of #1,650 rpm. The
output of this is the output rpm of the motor. There is feedback around the
integrator and the angular velocity dead-band as shown in Figure 5.4-1.

This transfer function, while not complex, includes dead-bands and an
accurate analysis would require an analog computer simmlation. For our pur-
poses, the circuit analysis will be simplified by ignoring the dead-bands,
This is not too unrealistic. The first dead-band, that is the effective force
dead-band, is caused by springs in the valve and overlap of the valve. This
dead-band could be reduced as much as desired by small changes in the design.
Simply lapping the valve closer would be one such change. At the time of this
writing it is not known what physically contributes to the rpm dead-band.

In our analysis the dead-bands shall be ignored and the resulting contin-—
uous transfer functions shall be used, The 19,200 rpm block is reduced to
320 revolutions/sec?-1b, revolutions/sec® being a more convenient unit to use
than RPM/sec.

The resultant equivalent circuit of the valve-motor combinations is
shown in Figure 5.4-2. It is readily seen that the overall transfer functions
between © and F of Figure 5.4-2 is given by

8= 1 rev (1)
F s(72s 1b

where T > is equal to 1/24th of a second. This corresponds to a break
frequency of 3.8 cycles/second.

The motor will be used to drive (through gearing) a leadscrew, which
will move the nozzle, The leadscrew must have a three-inch travel. A
5-threads/inch thread size has been tentatively selected, giving a total of
15 threads on the screw, Calling the angular rotation of the leadscrew Og,
the transfer function between this and the linear output motion of the noszle,
Y, i.e., the linear travel of a nut on the leadscrew is given by

Y=kog (2)




FORCE | . EFFECTIVE | 19,200 RPM
IN *s FORCE Fe SEC - LB

OUTPUT
INRPM

24 RPM
SEC RPM

Figure 5.4-1 Equivalent circuit of valve-motor packege




From the required 3-inch travel and 15 threads per inch, it is seen
that the k of equation (2) is equal to 1/5, or

Y =1/56g (3)

From the above, plus considerations of power requirements and maximm
speed requirements, it is seen that a gear ratio of 3/16 between the
actuator and the leadscrew will be reasonable, Hence,

9g = 3/16 © (4)

From equations (3) and (4) it is seen that

Y=_3 o (5
80

which is the transfer function between the linear output motion and the
angular travel (in revolutions) of the motor. From this equation, and
equation (1) above, the transfer function can be found between the input
force which is applied to the valve and the displacement of the nut upon
the threadscrew. This, is found to be

X =___.05 inch (6)

F‘_S(’T’zs+1) 1b




FORCE 320 REV T A S© A’OUTPUT
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24
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Figure 5,4-2 Simplified equivalent circuit of valve-motor package
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5.5 Stability Analysis

The simplified equivalent block diagram of the control circuit is given
in Figure 5.5-1s The block containing Kj is the transfer function of the
flapper-velve transducer. The frequency response characteristics of the opera-
tional fluid amplifier and the bellows is given by the block containing Ks;
and for the circuit under consideration, has a cutoff frequency of about 59
cycles per second. The valve-actuator and load transfer function is represent—
ed by the block which is fed by the output of the mechanical summer.

The phase-gain characteristics of the transfer function for the open loop
is plotted in Figure 5.5-2. It is seen from this plot that the circuit, as it
stands, will have a gain margin of 46 db. and a phase margin of 80 degrees.

No rate feedback is shown in the control loop of Figure 5.,5-1. Without
a rate feedback of some sort, the response characteristics of the system
would be unsatisfactory. The control loop analysed in this section is hybrid,
i.e. it contains both pure fluid and mechanical components. The characteristics
of the motor in the actuator package are such that a rate feedback cannot be
taken directly from the pneumatic motor to the fluid amplifier. Rate feedback
can be obtained by differentiating the output of the flapper-valve transducer
and then summing this differentiated signal and the direct output of the
transducer. This is shown in Figure 5.5~3. The fluid sum shown in this fig-
ure would be actually accomplished by applying two inputs to an operational

amplifier.
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